Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix.

Q3 Biochemistry, Genetics and Molecular Biology Molecular Membrane Biology Pub Date : 2014-11-01 Epub Date: 2014-12-15 DOI:10.3109/09687688.2014.987183
Fanny Ng, Bor Luen Tang
{"title":"Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix.","authors":"Fanny Ng,&nbsp;Bor Luen Tang","doi":"10.3109/09687688.2014.987183","DOIUrl":null,"url":null,"abstract":"<p><p>Studies on mitochondria protein import had revealed in detail molecular mechanisms of how peptides and proteins could be selectively targeted and translocated across membrane bound organelles. The opposite process of mitochondrial export, while known to occur in various aspects of cellular physiology and pathology, is less well understood. Two very recent reports have indicated that a large mitochondrial matrix protein complex, the pyruvate dehydrogenase complex (PDC) (or its component subunits), could be exported to the lysosomes and the nucleus, respectively. In the case of the latter, evidence was presented to suggest that the entire complex of 8-10 MDa could translocate in its entirety from the mitochondrial matrix to the nucleus upon mitogenic or stress stimuli. We discuss these findings in perspective to what is currently known about the processes of transport in and out of the mitochondrion.</p>","PeriodicalId":18858,"journal":{"name":"Molecular Membrane Biology","volume":"31 7-8","pages":"207-10"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/09687688.2014.987183","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Membrane Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687688.2014.987183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 21

Abstract

Studies on mitochondria protein import had revealed in detail molecular mechanisms of how peptides and proteins could be selectively targeted and translocated across membrane bound organelles. The opposite process of mitochondrial export, while known to occur in various aspects of cellular physiology and pathology, is less well understood. Two very recent reports have indicated that a large mitochondrial matrix protein complex, the pyruvate dehydrogenase complex (PDC) (or its component subunits), could be exported to the lysosomes and the nucleus, respectively. In the case of the latter, evidence was presented to suggest that the entire complex of 8-10 MDa could translocate in its entirety from the mitochondrial matrix to the nucleus upon mitogenic or stress stimuli. We discuss these findings in perspective to what is currently known about the processes of transport in and out of the mitochondrion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丙酮酸脱氢酶复合物(PDC)从线粒体基质出口。
线粒体蛋白质输入的研究揭示了肽和蛋白质如何选择性靶向和跨膜结合细胞器易位的分子机制。线粒体输出的相反过程,虽然已知发生在细胞生理和病理的各个方面,但却不太清楚。最近的两份报告表明,一个大的线粒体基质蛋白复合物,丙酮酸脱氢酶复合物(PDC)(或其组成亚基),可以分别出口到溶酶体和细胞核。在后者的情况下,有证据表明,在有丝分裂或应激刺激下,整个8-10 MDa复合体可以全部从线粒体基质转移到细胞核。我们从目前已知的线粒体内外转运过程的角度来讨论这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Membrane Biology
Molecular Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. Molecular Membrane Biology provides a forum for high quality research that serves to advance knowledge in molecular aspects of biological membrane structure and function. The journal welcomes submissions of original research papers and reviews in the following areas: • Membrane receptors and signalling • Membrane transporters, pores and channels • Synthesis and structure of membrane proteins • Membrane translocation and targeting • Lipid organisation and asymmetry • Model membranes • Membrane trafficking • Cytoskeletal and extracellular membrane interactions • Cell adhesion and intercellular interactions • Molecular dynamics and molecular modelling of membranes. • Antimicrobial peptides.
期刊最新文献
Comparison between MassARRAY and pyrosequencing for CYP2C19 and ABCB1 gene variants of clopidogrel efficiency genotyping. BKCa channel is a molecular target of vitamin C to protect against ischemic brain stroke. The KdpFABC complex - K+ transport against all odds. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Potassium channels and their role in glioma: A mini review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1