Efficient fast heuristic algorithms for minimum error correction haplotyping from SNP fragments.

Q4 Pharmacology, Toxicology and Pharmaceutics International Journal of Computational Biology and Drug Design Pub Date : 2014-01-01 Epub Date: 2014-12-25 DOI:10.1504/IJCBDD.2014.066543
Maryam Pourkamali Anaraki, Mehdi Sadeghi
{"title":"Efficient fast heuristic algorithms for minimum error correction haplotyping from SNP fragments.","authors":"Maryam Pourkamali Anaraki,&nbsp;Mehdi Sadeghi","doi":"10.1504/IJCBDD.2014.066543","DOIUrl":null,"url":null,"abstract":"<p><p>Availability of complete human genome is a crucial factor for genetic studies to explore possible association between the genome and complex diseases. Haplotype, as a set of single nucleotide polymorphisms (SNPs) on a single chromosome, is believed to contain promising data for disease association studies, detecting natural positive selection and recombination hotspots. Various computational methods for haplotype reconstruction from aligned fragment of SNPs have already been proposed. This study presents a novel approach to obtain paternal and maternal haplotypes form the SNP fragments on minimum error correction (MEC) model. Reconstructing haplotypes in MEC model is an NP-hard problem. Therefore, our proposed methods employ two fast and accurate clustering techniques as the core of their procedure to efficiently solve this ill-defined problem. The assessment of our approaches, compared to conventional methods, on two real benchmark datasets, i.e., ACE and DALY, proves the efficiency and accuracy. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"7 4","pages":"358-68"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.066543","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2014.066543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1

Abstract

Availability of complete human genome is a crucial factor for genetic studies to explore possible association between the genome and complex diseases. Haplotype, as a set of single nucleotide polymorphisms (SNPs) on a single chromosome, is believed to contain promising data for disease association studies, detecting natural positive selection and recombination hotspots. Various computational methods for haplotype reconstruction from aligned fragment of SNPs have already been proposed. This study presents a novel approach to obtain paternal and maternal haplotypes form the SNP fragments on minimum error correction (MEC) model. Reconstructing haplotypes in MEC model is an NP-hard problem. Therefore, our proposed methods employ two fast and accurate clustering techniques as the core of their procedure to efficiently solve this ill-defined problem. The assessment of our approaches, compared to conventional methods, on two real benchmark datasets, i.e., ACE and DALY, proves the efficiency and accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SNP片段最小纠错单倍型的高效快速启发式算法。
完整的人类基因组的可用性是遗传学研究探索基因组与复杂疾病之间可能关联的关键因素。单倍型作为单染色体上的一组单核苷酸多态性(snp),被认为在疾病关联研究、检测自然正选择和重组热点等方面具有很好的应用前景。已经提出了各种计算方法来从排列的snp片段重建单倍型。本研究提出了一种基于最小误差校正(MEC)模型从SNP片段获得父本和母本单倍型的新方法。MEC模型的单倍型重构是一个np困难问题。因此,我们提出的方法采用两种快速准确的聚类技术作为其过程的核心,以有效地解决这一不明确的问题。在ACE和DALY两个真实基准数据集上对我们的方法与传统方法进行了比较,证明了我们的方法的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computational Biology and Drug Design
International Journal of Computational Biology and Drug Design Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
1.00
自引率
0.00%
发文量
8
期刊最新文献
Assessment and Validation of Emulgel Based Salicylic acid Formulation Development to Drug release and Optimization by Statistical Design EyeRIS: Image-Based Identification of Goats using Iris Advanced DEEPCNN Breast Cancer Mammogram Image Detection and Classification with Butterfly Optimization Algorithm A Unique Noise Detector Developed for the Filtering of X-Ray Images of Bone Fractures Residue Interaction Network analysis and Molecular dynamics simulation of 6K Viroporin: Chikungunya Virus Channel Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1