{"title":"Efficient fast heuristic algorithms for minimum error correction haplotyping from SNP fragments.","authors":"Maryam Pourkamali Anaraki, Mehdi Sadeghi","doi":"10.1504/IJCBDD.2014.066543","DOIUrl":null,"url":null,"abstract":"<p><p>Availability of complete human genome is a crucial factor for genetic studies to explore possible association between the genome and complex diseases. Haplotype, as a set of single nucleotide polymorphisms (SNPs) on a single chromosome, is believed to contain promising data for disease association studies, detecting natural positive selection and recombination hotspots. Various computational methods for haplotype reconstruction from aligned fragment of SNPs have already been proposed. This study presents a novel approach to obtain paternal and maternal haplotypes form the SNP fragments on minimum error correction (MEC) model. Reconstructing haplotypes in MEC model is an NP-hard problem. Therefore, our proposed methods employ two fast and accurate clustering techniques as the core of their procedure to efficiently solve this ill-defined problem. The assessment of our approaches, compared to conventional methods, on two real benchmark datasets, i.e., ACE and DALY, proves the efficiency and accuracy. </p>","PeriodicalId":39227,"journal":{"name":"International Journal of Computational Biology and Drug Design","volume":"7 4","pages":"358-68"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJCBDD.2014.066543","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Biology and Drug Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCBDD.2014.066543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 1
Abstract
Availability of complete human genome is a crucial factor for genetic studies to explore possible association between the genome and complex diseases. Haplotype, as a set of single nucleotide polymorphisms (SNPs) on a single chromosome, is believed to contain promising data for disease association studies, detecting natural positive selection and recombination hotspots. Various computational methods for haplotype reconstruction from aligned fragment of SNPs have already been proposed. This study presents a novel approach to obtain paternal and maternal haplotypes form the SNP fragments on minimum error correction (MEC) model. Reconstructing haplotypes in MEC model is an NP-hard problem. Therefore, our proposed methods employ two fast and accurate clustering techniques as the core of their procedure to efficiently solve this ill-defined problem. The assessment of our approaches, compared to conventional methods, on two real benchmark datasets, i.e., ACE and DALY, proves the efficiency and accuracy.