Zhen Yang, Shenghua Zhong, Aaron Carass, Sarah H Ying, Jerry L Prince
{"title":"Deep Learning for Cerebellar Ataxia Classification and Functional Score Regression.","authors":"Zhen Yang, Shenghua Zhong, Aaron Carass, Sarah H Ying, Jerry L Prince","doi":"10.1007/978-3-319-10581-9_9","DOIUrl":null,"url":null,"abstract":"<p><p>Cerebellar ataxia is a progressive neuro-degenerative disease that has multiple genetic versions, each with a characteristic pattern of anatomical degeneration that yields distinctive motor and cognitive problems. Studying this pattern of degeneration can help with the diagnosis of disease subtypes, evaluation of disease stage, and treatment planning. In this work, we propose a learning framework using MR image data for discriminating a set of cerebellar ataxia types and predicting a disease related functional score. We address the difficulty in analyzing high-dimensional image data with limited training subjects by: 1) training weak classifiers/regressors on a set of image subdomains separately, and combining the weak classifier/regressor outputs to make the decision; 2) perturbing the image subdomain to increase the training samples; 3) using a deep learning technique called the stacked auto-encoder to develop highly representative feature vectors of the input data. Experiments show that our approach can reliably classify between one of four categories (healthy control and three types of ataxia), and predict the functional staging score for ataxia.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"8679 ","pages":"68-76"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-10581-9_9","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-10581-9_9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
Cerebellar ataxia is a progressive neuro-degenerative disease that has multiple genetic versions, each with a characteristic pattern of anatomical degeneration that yields distinctive motor and cognitive problems. Studying this pattern of degeneration can help with the diagnosis of disease subtypes, evaluation of disease stage, and treatment planning. In this work, we propose a learning framework using MR image data for discriminating a set of cerebellar ataxia types and predicting a disease related functional score. We address the difficulty in analyzing high-dimensional image data with limited training subjects by: 1) training weak classifiers/regressors on a set of image subdomains separately, and combining the weak classifier/regressor outputs to make the decision; 2) perturbing the image subdomain to increase the training samples; 3) using a deep learning technique called the stacked auto-encoder to develop highly representative feature vectors of the input data. Experiments show that our approach can reliably classify between one of four categories (healthy control and three types of ataxia), and predict the functional staging score for ataxia.