Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface.

IF 1.8 Q3 ENGINEERING, BIOMEDICAL Brain-Computer Interfaces Pub Date : 2014-07-01 DOI:10.1080/2326263X.2014.954183
Tim M Blakely, Jared D Olson, Kai J Miller, Rajesh P N Rao, Jeffrey G Ojemann
{"title":"Neural correlates of learning in an electrocorticographic motor-imagery brain-computer interface.","authors":"Tim M Blakely,&nbsp;Jared D Olson,&nbsp;Kai J Miller,&nbsp;Rajesh P N Rao,&nbsp;Jeffrey G Ojemann","doi":"10.1080/2326263X.2014.954183","DOIUrl":null,"url":null,"abstract":"<p><p>Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75-200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms.</p>","PeriodicalId":45112,"journal":{"name":"Brain-Computer Interfaces","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/2326263X.2014.954183","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain-Computer Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2326263X.2014.954183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 17

Abstract

Human subjects can learn to control a one-dimensional electrocorticographic (ECoG) brain-computer interface (BCI) using modulation of primary motor (M1) high-gamma activity (signal power in the 75-200 Hz range). However, the stability and dynamics of the signals over the course of new BCI skill acquisition have not been investigated. In this study, we report 3 characteristic periods in evolution of the high-gamma control signal during BCI training: initial, low task accuracy with corresponding low power modulation in the gamma spectrum, followed by a second period of improved task accuracy with increasing average power separation between activity and rest, and a final period of high task accuracy with stable (or decreasing) power separation and decreasing trial-to-trial variance. These findings may have implications in the design and implementation of BCI control algorithms.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
皮质电图运动-图像脑机接口中学习的神经关联。
人类受试者可以学习通过调制初级运动(M1)高伽马活动(信号功率在75-200赫兹范围内)来控制一维皮质电图(ECoG)脑机接口(BCI)。然而,在新的脑机接口技能习得过程中,信号的稳定性和动态尚未得到研究。在本研究中,我们报告了脑机接口训练过程中高伽马控制信号演化的3个特征期:初始阶段,任务精度较低,伽马谱中相应的低功率调制;随后是任务精度提高的第二阶段,活动和休息之间的平均功率间隔增加;最后是任务精度高的阶段,功率间隔稳定(或减小),试验间方差减小。这些发现可能会对脑机接口控制算法的设计和实现产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
9.50%
发文量
14
期刊最新文献
A combined EEG motor and speech imagery paradigm with automated successive halving for customizable command selection Toward methodologies for motor imagery enhancement: a tDCS-BCI study Large scale investigation of the effect of gender on mu rhythm suppression in motor imagery brain-computer interfaces Genetic algorithm based deep learning model adaptation for improvising the motor imagery classification Real-time feedback improves imagined 3D primitive object classification from EEG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1