OligoSpecificitySystem: global matching efficiency calculation of oligonucleotide sets taking into account degeneracy and mismatch possibilities.

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2014-01-01 DOI:10.1504/ijdmb.2014.062148
R J Michelland, S Combes, L Cauquil
{"title":"OligoSpecificitySystem: global matching efficiency calculation of oligonucleotide sets taking into account degeneracy and mismatch possibilities.","authors":"R J Michelland,&nbsp;S Combes,&nbsp;L Cauquil","doi":"10.1504/ijdmb.2014.062148","DOIUrl":null,"url":null,"abstract":"<p><p>Oligonucleotide sets are widely used in molecular biology to target a group of nucleic acid sequences using Polymerase Chain Reaction (PCR)-based technologies. Currently, the global matching efficiency of an oligonucleotide set is considered to be equal to the lower matching efficiency calculated for each oligonucleotide. However, sequences matching the limiting oligonucleotide did not always match the other oligonucleotide of the set, resulting in a biased evaluation of the matching efficiency. The OligoSpecificitySystem program avoid this bias by calculations of the real global matching efficiency of oligonucleotide sets. It can process all kinds of oligonucleotide sets, including the number of oligonucleotides, base pair degeneracy occurrences or mismatch occurrences.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"9 4","pages":"417-23"},"PeriodicalIF":0.2000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2014.062148","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2014.062148","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Oligonucleotide sets are widely used in molecular biology to target a group of nucleic acid sequences using Polymerase Chain Reaction (PCR)-based technologies. Currently, the global matching efficiency of an oligonucleotide set is considered to be equal to the lower matching efficiency calculated for each oligonucleotide. However, sequences matching the limiting oligonucleotide did not always match the other oligonucleotide of the set, resulting in a biased evaluation of the matching efficiency. The OligoSpecificitySystem program avoid this bias by calculations of the real global matching efficiency of oligonucleotide sets. It can process all kinds of oligonucleotide sets, including the number of oligonucleotides, base pair degeneracy occurrences or mismatch occurrences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OligoSpecificitySystem:考虑到退化和失配可能性的寡核苷酸集的全局匹配效率计算。
寡核苷酸集在分子生物学中广泛应用于利用基于聚合酶链反应(PCR)的技术靶向一组核酸序列。目前,一个寡核苷酸集的全局匹配效率被认为等于为每个寡核苷酸计算的较低匹配效率。然而,与限制性寡核苷酸匹配的序列并不总是与该集合中的其他寡核苷酸匹配,从而导致对匹配效率的评估存在偏差。OligoSpecificitySystem程序通过计算寡核苷酸集的真实全局匹配效率来避免这种偏差。它可以处理各种寡核苷酸集,包括寡核苷酸的数量、碱基对简并或错配的发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1