Quantification and Analysis of Large Multimodal Clinical Image Studies: Application to Stroke.

Ramesh Sridharan, Adrian V Dalca, Kaitlin M Fitzpatrick, Lisa Cloonan, Allison Kanakis, Ona Wu, Karen L Furie, Jonathan Rosand, Natalia S Rost, Polina Golland
{"title":"Quantification and Analysis of Large Multimodal Clinical Image Studies: Application to Stroke.","authors":"Ramesh Sridharan, Adrian V Dalca, Kaitlin M Fitzpatrick, Lisa Cloonan, Allison Kanakis, Ona Wu, Karen L Furie, Jonathan Rosand, Natalia S Rost, Polina Golland","doi":"10.1007/978-3-319-02126-3_3","DOIUrl":null,"url":null,"abstract":"<p><p>We present an analysis framework for large studies of multimodal clinical quality brain image collections. Processing and analysis of such datasets is challenging due to low resolution, poor contrast, mis-aligned images, and restricted field of view. We adapt existing registration and segmentation methods and build a computational pipeline for spatial normalization and feature extraction. The resulting aligned dataset enables clinically meaningful analysis of spatial distributions of relevant anatomical features and of their evolution with age and disease progression. We demonstrate the approach on a neuroimaging study of stroke with more than 800 patients. We show that by combining data from several modalities, we can automatically segment important biomarkers such as white matter hyperintensity and characterize pathology evolution in this heterogeneous cohort. Specifically, we examine two sub-populations with different dynamics of white matter hyperintensity changes as a function of patients' age. Pipeline and analysis code is available at http://groups.csail.mit.edu/vision/medical-vision/stroke/.</p>","PeriodicalId":90659,"journal":{"name":"Multimodal brain image analysis : third International Workshop, MBIA 2013, held in conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013 : proceedings. MBIA (Workshop) (3rd : 2013 : Nagoya-shi, Japan)","volume":"8159 ","pages":"18-30"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4306599/pdf/nihms-656164.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal brain image analysis : third International Workshop, MBIA 2013, held in conjunction with MICCAI 2013, Nagoya, Japan, September 22, 2013 : proceedings. MBIA (Workshop) (3rd : 2013 : Nagoya-shi, Japan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-02126-3_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an analysis framework for large studies of multimodal clinical quality brain image collections. Processing and analysis of such datasets is challenging due to low resolution, poor contrast, mis-aligned images, and restricted field of view. We adapt existing registration and segmentation methods and build a computational pipeline for spatial normalization and feature extraction. The resulting aligned dataset enables clinically meaningful analysis of spatial distributions of relevant anatomical features and of their evolution with age and disease progression. We demonstrate the approach on a neuroimaging study of stroke with more than 800 patients. We show that by combining data from several modalities, we can automatically segment important biomarkers such as white matter hyperintensity and characterize pathology evolution in this heterogeneous cohort. Specifically, we examine two sub-populations with different dynamics of white matter hyperintensity changes as a function of patients' age. Pipeline and analysis code is available at http://groups.csail.mit.edu/vision/medical-vision/stroke/.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型多模态临床图像研究的量化与分析:应用于中风。
我们提出了一个分析框架,用于对多模态临床质量脑图像集进行大型研究。由于分辨率低、对比度差、图像不对齐和视野受限,处理和分析此类数据集具有挑战性。我们对现有的配准和分割方法进行了调整,并建立了一个用于空间归一化和特征提取的计算管道。由此产生的对齐数据集能对相关解剖特征的空间分布及其随年龄和疾病进展的演变进行有临床意义的分析。我们在对 800 多名中风患者进行的神经成像研究中演示了这种方法。我们表明,通过结合多种模式的数据,我们可以自动分割白质高密度等重要生物标志物,并描述这一异质性队列的病理演变特征。具体来说,我们研究了白质高密度变化动态随患者年龄变化而不同的两个亚群。管道和分析代码见 http://groups.csail.mit.edu/vision/medical-vision/stroke/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping Dynamic Changes in Ventricular Volume onto Baseline Cortical Surfaces in Normal Aging, MCI, and Alzheimer's Disease. A Dynamical Clustering Model of Brain Connectivity Inspired by the N -Body Problem. Modeling 4D Changes in Pathological Anatomy using Domain Adaptation: Analysis of TBI Imaging using a Tumor Database. PARP1 gene variation and microglial activity on [11C]PBR28 PET in older adults at risk for Alzheimer's disease. A Graph-Based Integration of Multimodal Brain Imaging Data for the Detection of Early Mild Cognitive Impairment (E-MCI).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1