Preclinical evaluation and molecular docking of 2,5-di-tert-butyl-1,4-benzoquinone (DTBBQ) from Streptomyces sp. VITVSK1 as a potent antibacterial agent.

Vinay Gopal Jannu, Pratibha Sanjenbam, Krishnan Kannabiran
{"title":"Preclinical evaluation and molecular docking of 2,5-di-tert-butyl-1,4-benzoquinone (DTBBQ) from Streptomyces sp. VITVSK1 as a potent antibacterial agent.","authors":"Vinay Gopal Jannu,&nbsp;Pratibha Sanjenbam,&nbsp;Krishnan Kannabiran","doi":"10.1504/IJBRA.2015.068089","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of bacterial disease has increased tremendously in the last decade, because of the emergence of drug resistance strains within the bacterial pathogens. The present study was to investigate the antibacterial compound 2,5-di-tert-butyl-1,4-benzoquinone (DTBBQ) isolated from marine Streptomyces sp. VITVSK1 as a potent antibacterial agent. The antibacterial potential of DTBBQ was investigated against RNA Polymerase (PDB ID-1I6V) by in silico molecular docking tools. Results of our study showed the high affinity interaction between DTBBQ and RNA polymerase and also confirmed the drug likeliness of DTBBQ using ADMET in silico pharmacology tools. Our findings suggest that DTBBQ could be used as antibacterial drug to defend the emerging antibacterial resistance. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2015.068089","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2015.068089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 5

Abstract

The incidence of bacterial disease has increased tremendously in the last decade, because of the emergence of drug resistance strains within the bacterial pathogens. The present study was to investigate the antibacterial compound 2,5-di-tert-butyl-1,4-benzoquinone (DTBBQ) isolated from marine Streptomyces sp. VITVSK1 as a potent antibacterial agent. The antibacterial potential of DTBBQ was investigated against RNA Polymerase (PDB ID-1I6V) by in silico molecular docking tools. Results of our study showed the high affinity interaction between DTBBQ and RNA polymerase and also confirmed the drug likeliness of DTBBQ using ADMET in silico pharmacology tools. Our findings suggest that DTBBQ could be used as antibacterial drug to defend the emerging antibacterial resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
链霉菌(Streptomyces sp. VITVSK1)中2,5-二叔丁基-1,4-苯醌(DTBBQ)的临床前评价和分子对接。
在过去十年中,由于细菌病原体中出现了耐药菌株,细菌性疾病的发病率急剧增加。本研究旨在研究从海洋链霉菌(Streptomyces sp. VITVSK1)中分离得到的抗菌化合物2,5-二叔丁基-1,4-苯醌(DTBBQ)的抗菌作用。采用硅分子对接工具研究了DTBBQ对RNA聚合酶(PDB - 1i6v)的抑菌潜力。我们的研究结果显示DTBBQ与RNA聚合酶之间的高亲和力相互作用,并在硅药理学工具中使用ADMET证实了DTBBQ的药物可能性。我们的研究结果表明,DTBBQ可以作为抗菌药物来防御新出现的抗菌耐药性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Bioinformatics Research and Applications
International Journal of Bioinformatics Research and Applications Health Professions-Health Information Management
CiteScore
0.60
自引率
0.00%
发文量
26
期刊介绍: Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.
期刊最新文献
CoSec In silico studies on Acalypha indica, Catharanthus roseus and Coleus aromaticus derivative compounds against Omicron Prediction of ncRNA from RNA-Seq Data using Machine Learning Techniques A Machine Learning Approach to Assisted Prediction of Alzheimer's Disease with Convolutional Neural Network Development of Predictive Model of Diabetic Using Supervised Machine Learning Classification Algorithm of Ensemble Voting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1