Samer I Al-Gharabli, Salem Al-Agtash, Nathir A Rawashdeh, Khaled R Barqawi
{"title":"Artificial neural networks for dihedral angles prediction in enzyme loops: a novel approach.","authors":"Samer I Al-Gharabli, Salem Al-Agtash, Nathir A Rawashdeh, Khaled R Barqawi","doi":"10.1504/IJBRA.2015.068090","DOIUrl":null,"url":null,"abstract":"<p><p>Structure prediction of proteins is considered a limiting step and determining factor in drug development and in the introduction of new therapies. Since the 3D structures of proteins determine their functionalities, prediction of dihedral angles remains an open and important problem in bioinformatics, as well as a major step in discovering tertiary structures. This work presents a method that predicts values of the dihedral angles φ and ψ for enzyme loops based on data derived from amino acid sequences. The prediction of dihedral angles is implemented through a neural network based mining mechanism. The amino acid sequence data represents 6342 enzyme loop chains with 18,882 residues. The initial neural network input was a selection of 115 features and the outputs were the predicted dihedral angles φ and ψ. The simulation results yielded a 0.64 Pearson's correlation coefficient. After feature selection through determining insignificant features, the input feature vector size was reduced to 45, while maintaining close to identical performance. </p>","PeriodicalId":35444,"journal":{"name":"International Journal of Bioinformatics Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJBRA.2015.068090","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBRA.2015.068090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 2
Abstract
Structure prediction of proteins is considered a limiting step and determining factor in drug development and in the introduction of new therapies. Since the 3D structures of proteins determine their functionalities, prediction of dihedral angles remains an open and important problem in bioinformatics, as well as a major step in discovering tertiary structures. This work presents a method that predicts values of the dihedral angles φ and ψ for enzyme loops based on data derived from amino acid sequences. The prediction of dihedral angles is implemented through a neural network based mining mechanism. The amino acid sequence data represents 6342 enzyme loop chains with 18,882 residues. The initial neural network input was a selection of 115 features and the outputs were the predicted dihedral angles φ and ψ. The simulation results yielded a 0.64 Pearson's correlation coefficient. After feature selection through determining insignificant features, the input feature vector size was reduced to 45, while maintaining close to identical performance.
期刊介绍:
Bioinformatics is an interdisciplinary research field that combines biology, computer science, mathematics and statistics into a broad-based field that will have profound impacts on all fields of biology. The emphasis of IJBRA is on basic bioinformatics research methods, tool development, performance evaluation and their applications in biology. IJBRA addresses the most innovative developments, research issues and solutions in bioinformatics and computational biology and their applications. Topics covered include Databases, bio-grid, system biology Biomedical image processing, modelling and simulation Bio-ontology and data mining, DNA assembly, clustering, mapping Computational genomics/proteomics Silico technology: computational intelligence, high performance computing E-health, telemedicine Gene expression, microarrays, identification, annotation Genetic algorithms, fuzzy logic, neural networks, data visualisation Hidden Markov models, machine learning, support vector machines Molecular evolution, phylogeny, modelling, simulation, sequence analysis Parallel algorithms/architectures, computational structural biology Phylogeny reconstruction algorithms, physiome, protein structure prediction Sequence assembly, search, alignment Signalling/computational biomedical data engineering Simulated annealing, statistical analysis, stochastic grammars.