Regulation of cardiac β3-adrenergic receptors in hyperglycemia.

IF 1.5 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Indian journal of biochemistry & biophysics Pub Date : 2014-12-01
Belma Turan, Erkan Tuncay
{"title":"Regulation of cardiac β3-adrenergic receptors in hyperglycemia.","authors":"Belma Turan,&nbsp;Erkan Tuncay","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Beta-adrenoceptors (β-AR), members of the G protein-coupled receptors play important roles in the regulation of heart function. A positive inotropic action of catecholamines is mediated through their interaction with β-AR, located on the sarcolemma, while they can also mediate some deleterious effects, such as cardiac arrhythmias or myocardial apoptosis. The well-known β-AR-associated signaling in heart is composed of a coupled mechanism among both β1- and β2-AR and stimulatory G protein (G(s)). This coupled mechanism further leads to the activation of adenylyl cyclase and thereby increases in intracellular cAMP level. However, recent studies have emphasized the contribution of constitutive β3-AR coupling to G(i) proteins, thereby initiating additional signal transduction pathways, particularly under physiopathological conditions. Diabetic cardiomyopathy, as a distinct entity is recognized due to its diminished responsiveness to β1-AR agonist stimulation in the heart from diabetic rats with no important changes in the responses mediated with β2-AR. Furthermore, an upregulation of β3-AR has been shown in diabetic rat heart with a strong negative inotropic effect on left ventricular function. Experimental data provide evidences that the mechanisms for the negative inotropic effect with β3-AR activation appear to involve a pertussis toxin (PTX)-sensitive G protein and the activation of a nitric oxide synthase pathway. On the other hand, β-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant with both sex- and dose-dependent manner. However, further investigations are needed to clarify the roles of both altered expression and/or responsiveness of β-AR and the benefits with β-blocker treatment in diabetes. This review discusses the role of β-AR activation, particularly β3-AR in cardiac pathological remodeling under hyperglycemia.</p>","PeriodicalId":13281,"journal":{"name":"Indian journal of biochemistry & biophysics","volume":"51 6","pages":"483-92"},"PeriodicalIF":1.5000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian journal of biochemistry & biophysics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Beta-adrenoceptors (β-AR), members of the G protein-coupled receptors play important roles in the regulation of heart function. A positive inotropic action of catecholamines is mediated through their interaction with β-AR, located on the sarcolemma, while they can also mediate some deleterious effects, such as cardiac arrhythmias or myocardial apoptosis. The well-known β-AR-associated signaling in heart is composed of a coupled mechanism among both β1- and β2-AR and stimulatory G protein (G(s)). This coupled mechanism further leads to the activation of adenylyl cyclase and thereby increases in intracellular cAMP level. However, recent studies have emphasized the contribution of constitutive β3-AR coupling to G(i) proteins, thereby initiating additional signal transduction pathways, particularly under physiopathological conditions. Diabetic cardiomyopathy, as a distinct entity is recognized due to its diminished responsiveness to β1-AR agonist stimulation in the heart from diabetic rats with no important changes in the responses mediated with β2-AR. Furthermore, an upregulation of β3-AR has been shown in diabetic rat heart with a strong negative inotropic effect on left ventricular function. Experimental data provide evidences that the mechanisms for the negative inotropic effect with β3-AR activation appear to involve a pertussis toxin (PTX)-sensitive G protein and the activation of a nitric oxide synthase pathway. On the other hand, β-blockers demonstrate marked beneficial effects in heart dysfunction with scavenging free radicals and/or acting as an antioxidant with both sex- and dose-dependent manner. However, further investigations are needed to clarify the roles of both altered expression and/or responsiveness of β-AR and the benefits with β-blocker treatment in diabetes. This review discusses the role of β-AR activation, particularly β3-AR in cardiac pathological remodeling under hyperglycemia.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏β3-肾上腺素能受体在高血糖中的调节作用。
β-肾上腺素受体(β-AR)是G蛋白偶联受体的成员,在心脏功能的调节中起重要作用。儿茶酚胺的正性肌力作用是通过它们与位于肌膜上的β-AR的相互作用介导的,同时它们也可以介导一些有害作用,如心律失常或心肌凋亡。众所周知的心脏中β- ar相关信号是由β1-和β2-AR与刺激G蛋白(G(s))之间的耦合机制组成的。这种耦合机制进一步导致腺苷酸环化酶的激活,从而增加细胞内cAMP水平。然而,最近的研究强调了组成型β3-AR偶联对G(i)蛋白的贡献,从而启动了额外的信号转导途径,特别是在生理病理条件下。糖尿病性心肌病作为一种独特的实体被认为是由于其对糖尿病大鼠心脏β1-AR激动剂刺激的反应性降低,而β2-AR介导的反应没有重要变化。此外,β3-AR在糖尿病大鼠心脏中表达上调,并对左心室功能产生强烈的负性肌力作用。实验数据表明,β3-AR激活的负性收缩效应的机制可能涉及百日破毒素(PTX)敏感的G蛋白和一氧化氮合酶途径的激活。另一方面,β受体阻滞剂通过清除自由基和/或作为抗氧化剂在心功能障碍中表现出明显的有益作用,具有性别和剂量依赖性。然而,需要进一步的研究来阐明β-AR表达改变和/或反应性的作用,以及β-受体阻滞剂治疗糖尿病的益处。本文就β-AR激活,特别是β3-AR在高血糖状态下心脏病理重构中的作用进行综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indian journal of biochemistry & biophysics
Indian journal of biochemistry & biophysics 生物-生化与分子生物学
CiteScore
2.90
自引率
50.00%
发文量
88
审稿时长
3 months
期刊介绍: Started in 1964, this journal publishes original research articles in the following areas: structure-function relationships of biomolecules; biomolecular recognition, protein-protein and protein-DNA interactions; gene-cloning, genetic engineering, genome analysis, gene targeting, gene expression, vectors, gene therapy; drug targeting, drug design; molecular basis of genetic diseases; conformational studies, computer simulation, novel DNA structures and their biological implications, protein folding; enzymes structure, catalytic mechanisms, regulation; membrane biochemistry, transport, ion channels, signal transduction, cell-cell communication, glycobiology; receptors, antigen-antibody binding, neurochemistry, ageing, apoptosis, cell cycle control; hormones, growth factors; oncogenes, host-virus interactions, viral assembly and structure; intermediary metabolism, molecular basis of disease processes, vitamins, coenzymes, carrier proteins, toxicology; plant and microbial biochemistry; surface forces, micelles and microemulsions, colloids, electrical phenomena, etc. in biological systems. Solicited peer reviewed articles on contemporary Themes and Methods in Biochemistry and Biophysics form an important feature of IJBB. Review articles on a current topic in the above fields are also considered. They must dwell more on research work done during the last couple of years in the field and authors should integrate their own work with that of others with acumen and authenticity, mere compilation of references by a third party is discouraged. While IJBB strongly promotes innovative novel research works for publication as full length papers, it also considers research data emanating from limited objectives, and extension of ongoing experimental works as ‘Notes’. IJBB follows “Double Blind Review process” where author names, affiliations and other correspondence details are removed to ensure fare evaluation. At the same time, reviewer names are not disclosed to authors.
期刊最新文献
Polyphenol MHQP as an allosteric inhibitor of Kinesin-5: Cease the molecular catwalk of “Drunken Sailor” Design and development of mutant EGFR inhibitors from a structural perspective Protein Carbamylation in Neurodegeneration and other age-related disorders Newly-discovered behaviour in the bacterial histone-like protein, HU Determination of neuroprotective effects of medium chain fatty acids and their derivatives on mutant huntingtin aggregates, oxidative stress and ATP levels in HD150Q cell line model of Huntington’s disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1