C Aştefănoaei, D Creangă, E Pretegiani, L M Optican, A Rufa
{"title":"DYNAMICAL COMPLEXITY ANALYSIS OF SACCADIC EYE MOVEMENTS IN TWO DIFFERENT PSYCHOLOGICAL CONDITIONS.","authors":"C Aştefănoaei, D Creangă, E Pretegiani, L M Optican, A Rufa","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Saccadic eye movements of a normal subject were assessed through semi-quantitative analysis algorithms based on linear and non-linear test application in order to highlight the dynamics type characterizing saccadic neural system behavior. These movements were recorded during a simple visually-guided saccade test and one with a cognitive load involving button pressing to show a decision. Following the application of specific computational tests, chaotic dynamical trend dominancy was mostly revealed with some differences between the two saccade recording conditions: auto-correlation time was increased from 170 to 240 by cognitive task superposition and the Hurst exponent was enhanced from 0.52 to 0.76, denoting more persistence in the dynamics of saccadic system during increased neural activity related to cognitive task.</p>","PeriodicalId":49588,"journal":{"name":"Romanian Reports in Physics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4331081/pdf/nihms656971.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Romanian Reports in Physics","FirstCategoryId":"101","ListUrlMain":"","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Saccadic eye movements of a normal subject were assessed through semi-quantitative analysis algorithms based on linear and non-linear test application in order to highlight the dynamics type characterizing saccadic neural system behavior. These movements were recorded during a simple visually-guided saccade test and one with a cognitive load involving button pressing to show a decision. Following the application of specific computational tests, chaotic dynamical trend dominancy was mostly revealed with some differences between the two saccade recording conditions: auto-correlation time was increased from 170 to 240 by cognitive task superposition and the Hurst exponent was enhanced from 0.52 to 0.76, denoting more persistence in the dynamics of saccadic system during increased neural activity related to cognitive task.