popRange: a highly flexible spatially and temporally explicit Wright-Fisher simulator.

Q2 Decision Sciences Source Code for Biology and Medicine Pub Date : 2015-04-11 eCollection Date: 2015-01-01 DOI:10.1186/s13029-015-0036-4
Kimberly F McManus
{"title":"popRange: a highly flexible spatially and temporally explicit Wright-Fisher simulator.","authors":"Kimberly F McManus","doi":"10.1186/s13029-015-0036-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sequencing and genotyping technology advancements have led to massive, growing repositories of spatially explicit genetic data and increasing quantities of temporal data (i.e., ancient DNA). These data will allow more complex and fine-scale inferences about population history than ever before; however, new methods are needed to test complex hypotheses.</p><p><strong>Results: </strong>This article presents popRange, a forward genetic simulator, which incorporates large-scale genetic data with stochastic spatially and temporally explicit demographic and selective models. Features such as spatially and temporally variable selection coefficients and demography are incorporated in a highly flexible manner. popRange is implemented as an R package and presented with an example simulation exploring a selected allele's trajectory in multiple subpopulations.</p><p><strong>Conclusions: </strong>popRange allows researchers to evaluate and test complex scenarios by simulating large-scale data with complicated demographic and selective features. popRange is available for download at http://cran.r-project.org/web/packages/popRange/index.html.</p>","PeriodicalId":35052,"journal":{"name":"Source Code for Biology and Medicine","volume":"10 ","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13029-015-0036-4","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Source Code for Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13029-015-0036-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 3

Abstract

Background: Sequencing and genotyping technology advancements have led to massive, growing repositories of spatially explicit genetic data and increasing quantities of temporal data (i.e., ancient DNA). These data will allow more complex and fine-scale inferences about population history than ever before; however, new methods are needed to test complex hypotheses.

Results: This article presents popRange, a forward genetic simulator, which incorporates large-scale genetic data with stochastic spatially and temporally explicit demographic and selective models. Features such as spatially and temporally variable selection coefficients and demography are incorporated in a highly flexible manner. popRange is implemented as an R package and presented with an example simulation exploring a selected allele's trajectory in multiple subpopulations.

Conclusions: popRange allows researchers to evaluate and test complex scenarios by simulating large-scale data with complicated demographic and selective features. popRange is available for download at http://cran.r-project.org/web/packages/popRange/index.html.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
popRange:一个高度灵活的空间和时间显式Wright-Fisher模拟器。
背景:测序和基因分型技术的进步导致了大量的、不断增长的空间显性遗传数据库和数量不断增加的时间数据(即古代DNA)。这些数据将允许对人口历史进行比以往任何时候都更复杂、更精细的推断;然而,需要新的方法来检验复杂的假设。结果:本文提出了一种前向遗传模拟器popRange,它将大规模遗传数据与随机的空间和时间明确的人口统计和选择模型相结合。空间和时间可变的选择系数和人口统计等特征以高度灵活的方式结合在一起。popRange作为一个R包实现,并给出了一个示例模拟,探索一个选定的等位基因在多个亚种群中的轨迹。结论:popRange允许研究人员通过模拟具有复杂人口统计学和选择性特征的大规模数据来评估和测试复杂的场景。popRange可从http://cran.r-project.org/web/packages/popRange/index.html下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Source Code for Biology and Medicine
Source Code for Biology and Medicine Decision Sciences-Information Systems and Management
自引率
0.00%
发文量
0
期刊介绍: Source Code for Biology and Medicine is a peer-reviewed open access, online journal that publishes articles on source code employed over a wide range of applications in biology and medicine. The journal"s aim is to publish source code for distribution and use in the public domain in order to advance biological and medical research. Through this dissemination, it may be possible to shorten the time required for solving certain computational problems for which there is limited source code availability or resources.
期刊最新文献
2DKD: a toolkit for content-based local image search. Computing and graphing probability values of pearson distributions: a SAS/IML macro. iPBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach Social support for collaboration and group awareness in life science research teams. MZPAQ: a FASTQ data compression tool.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1