HMEC: A Heuristic Algorithm for Individual Haplotyping with Minimum Error Correction.

ISRN bioinformatics Pub Date : 2013-01-28 eCollection Date: 2013-01-01 DOI:10.1155/2013/291741
Md Shamsuzzoha Bayzid, Md Maksudul Alam, Abdullah Mueen, Md Saidur Rahman
{"title":"HMEC: A Heuristic Algorithm for Individual Haplotyping with Minimum Error Correction.","authors":"Md Shamsuzzoha Bayzid,&nbsp;Md Maksudul Alam,&nbsp;Abdullah Mueen,&nbsp;Md Saidur Rahman","doi":"10.1155/2013/291741","DOIUrl":null,"url":null,"abstract":"<p><p>Haplotype is a pattern of single nucleotide polymorphisms (SNPs) on a single chromosome. Constructing a pair of haplotypes from aligned and overlapping but intermixed and erroneous fragments of the chromosomal sequences is a nontrivial problem. Minimum error correction approach aims to minimize the number of errors to be corrected so that the pair of haplotypes can be constructed through consensus of the fragments. We give a heuristic algorithm (HMEC) that searches through alternative solutions using a gain measure and stops whenever no better solution can be achieved. Time complexity of each iteration is O(m (3) k) for an m × k SNP matrix where m and k are the number of fragments (number of rows) and number of SNP sites (number of columns), respectively, in an SNP matrix. Alternative gain measure is also given to reduce running time. We have compared our algorithm with other methods in terms of accuracy and running time on both simulated and real data, and our extensive experimental results indicate the superiority of our algorithm over others. </p>","PeriodicalId":90877,"journal":{"name":"ISRN bioinformatics","volume":"2013 ","pages":"291741"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2013/291741","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISRN bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/291741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2013/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Haplotype is a pattern of single nucleotide polymorphisms (SNPs) on a single chromosome. Constructing a pair of haplotypes from aligned and overlapping but intermixed and erroneous fragments of the chromosomal sequences is a nontrivial problem. Minimum error correction approach aims to minimize the number of errors to be corrected so that the pair of haplotypes can be constructed through consensus of the fragments. We give a heuristic algorithm (HMEC) that searches through alternative solutions using a gain measure and stops whenever no better solution can be achieved. Time complexity of each iteration is O(m (3) k) for an m × k SNP matrix where m and k are the number of fragments (number of rows) and number of SNP sites (number of columns), respectively, in an SNP matrix. Alternative gain measure is also given to reduce running time. We have compared our algorithm with other methods in terms of accuracy and running time on both simulated and real data, and our extensive experimental results indicate the superiority of our algorithm over others.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HMEC:个体单倍型最小纠错的启发式算法。
单倍型是单染色体上的单核苷酸多态性(snp)的一种模式。从染色体序列中排列重叠但混杂错误的片段构建一对单倍型是一个非常重要的问题。最小纠错法的目的是尽量减少需要纠正的错误数量,从而通过片段的一致构建对单倍型。我们给出了一种启发式算法(HMEC),它使用增益度量搜索备选解决方案,并在没有更好的解决方案时停止。对于m × k SNP矩阵,每次迭代的时间复杂度为O(m (3) k),其中m和k分别为SNP矩阵中的片段数(行数)和SNP位点数(列数)。为了缩短运行时间,还给出了备选增益措施。在模拟数据和真实数据上,我们将我们的算法与其他方法在精度和运行时间方面进行了比较,我们大量的实验结果表明我们的算法优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hierarchical ensemble methods for protein function prediction. Comparison of merging and meta-analysis as alternative approaches for integrative gene expression analysis. NucVoter: A Voting Algorithm for Reliable Nucleosome Prediction Using Next-Generation Sequencing Data. Discovery of YopE Inhibitors by Pharmacophore-Based Virtual Screening and Docking. Stormbow: A Cloud-Based Tool for Reads Mapping and Expression Quantification in Large-Scale RNA-Seq Studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1