MagiCMicroRna: a web implementation of AgiMicroRna using shiny.

Q2 Decision Sciences Source Code for Biology and Medicine Pub Date : 2015-03-26 eCollection Date: 2015-01-01 DOI:10.1186/s13029-015-0035-5
Maarten Lj Coonen, Daniel Hj Theunissen, Jos Cs Kleinjans, Danyel Gj Jennen
{"title":"MagiCMicroRna: a web implementation of AgiMicroRna using shiny.","authors":"Maarten Lj Coonen,&nbsp;Daniel Hj Theunissen,&nbsp;Jos Cs Kleinjans,&nbsp;Danyel Gj Jennen","doi":"10.1186/s13029-015-0035-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MicroRNA expression can be quantified using sequencing techniques or commercial microRNA-expression arrays. Recently, the AgiMicroRna R-package was published that enabled systematic preprocessing and statistical analysis for Agilent microRNA arrays. Here we describe MagiCMicroRna, which is a user-friendly web interface for this package, together with a new filtering approach.</p><p><strong>Results: </strong>We used MagiCMicroRna to normalize and filter an Agilent miRNA microarray dataset of cancerous and normal tissues from 14 different patients. With the standard filtering procedure, 250 out of 817 microRNAs remained, whereas the new group-specific filtering approach resulted in broader datasets for further analysis in most groups (>279 microRNAs remaining).</p><p><strong>Conclusions: </strong>The user-friendly web interface of MagiCMicroRna enables researchers to normalize and filter Agilent microarrays by the click of one button. Furthermore, MagiCMicroRna provides flexibility in choosing the filtering method. The new group-specific filtering approach lead to an increased number and additional tissue-specific microRNAs remaining for subsequent analysis compared to the standard procedure. The MagiCMicroRna web interface and source code can be downloaded from https://bitbucket.org/mutgx/magicmicrorna.git.</p>","PeriodicalId":35052,"journal":{"name":"Source Code for Biology and Medicine","volume":"10 ","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13029-015-0035-5","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Source Code for Biology and Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13029-015-0035-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 9

Abstract

Background: MicroRNA expression can be quantified using sequencing techniques or commercial microRNA-expression arrays. Recently, the AgiMicroRna R-package was published that enabled systematic preprocessing and statistical analysis for Agilent microRNA arrays. Here we describe MagiCMicroRna, which is a user-friendly web interface for this package, together with a new filtering approach.

Results: We used MagiCMicroRna to normalize and filter an Agilent miRNA microarray dataset of cancerous and normal tissues from 14 different patients. With the standard filtering procedure, 250 out of 817 microRNAs remained, whereas the new group-specific filtering approach resulted in broader datasets for further analysis in most groups (>279 microRNAs remaining).

Conclusions: The user-friendly web interface of MagiCMicroRna enables researchers to normalize and filter Agilent microarrays by the click of one button. Furthermore, MagiCMicroRna provides flexibility in choosing the filtering method. The new group-specific filtering approach lead to an increased number and additional tissue-specific microRNAs remaining for subsequent analysis compared to the standard procedure. The MagiCMicroRna web interface and source code can be downloaded from https://bitbucket.org/mutgx/magicmicrorna.git.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MagiCMicroRna:一个使用shiny的AgiMicroRna的web实现。
背景:MicroRNA的表达可以通过测序技术或商用MicroRNA表达阵列进行量化。最近,AgiMicroRna r包发布,可以对Agilent microRNA阵列进行系统预处理和统计分析。在这里,我们描述MagiCMicroRna,这是一个用户友好的网络界面,为这个包,以及一个新的过滤方法。结果:我们使用MagiCMicroRna对来自14名不同患者的癌组织和正常组织的安捷伦miRNA微阵列数据集进行归一化和过滤。使用标准过滤程序,817个microrna中有250个保留下来,而新的组特异性过滤方法在大多数组(>279个microrna)中产生了更广泛的数据集,用于进一步分析。结论:MagiCMicroRna的用户友好的web界面使研究人员能够通过点击一键对安捷伦微阵列进行规范化和筛选。此外,MagiCMicroRna提供了选择过滤方法的灵活性。与标准程序相比,新的组特异性过滤方法导致增加数量和额外的组织特异性microrna用于后续分析。MagiCMicroRna的web界面和源代码可以从https://bitbucket.org/mutgx/magicmicrorna.git下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Source Code for Biology and Medicine
Source Code for Biology and Medicine Decision Sciences-Information Systems and Management
自引率
0.00%
发文量
0
期刊介绍: Source Code for Biology and Medicine is a peer-reviewed open access, online journal that publishes articles on source code employed over a wide range of applications in biology and medicine. The journal"s aim is to publish source code for distribution and use in the public domain in order to advance biological and medical research. Through this dissemination, it may be possible to shorten the time required for solving certain computational problems for which there is limited source code availability or resources.
期刊最新文献
2DKD: a toolkit for content-based local image search. Computing and graphing probability values of pearson distributions: a SAS/IML macro. iPBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach Social support for collaboration and group awareness in life science research teams. MZPAQ: a FASTQ data compression tool.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1