Inhibition of As(III) and Hg(II) caused aortic hypercontraction by eugenol, linalool and carvone.

Q3 Medicine Journal of Smooth Muscle Research Pub Date : 2014-01-01 DOI:10.1540/jsmr.50.93
Swati Kundu, Hiba Shabir, Seemi Farhat Basir, Luqman Ahmad Khan
{"title":"Inhibition of As(III) and Hg(II) caused aortic hypercontraction by eugenol, linalool and carvone.","authors":"Swati Kundu,&nbsp;Hiba Shabir,&nbsp;Seemi Farhat Basir,&nbsp;Luqman Ahmad Khan","doi":"10.1540/jsmr.50.93","DOIUrl":null,"url":null,"abstract":"<p><p>Acute and chronic exposure to arsenic and mercury is known to produce vasoconstriction. There is, however, no clarity concerning the pathways leading to this increased contraction. In this study we elicit and compare maximum contractility of rat aortas under resting conditions in the presence of arsenic and mercury, and delineate pathways mediating this effect. Phenylephrine (PE) induced hypercontraction of 37% and 32% were obtained when isolated aortic segments were exposed to 25 ?M As(III) and 6 nM Hg(II), respectively. Isometric contraction measurements in presence of apocynin, verapamil and sodium nitroprusside indicates that the major causes of increased contraction are reactive oxygen species (ROS) and depletion of nitric oxide (NO). Calcium influx plays a minor role in arsenic and mercury caused hypercontraction. In unexposed aorta, eugenol causes relaxation by inhibiting ROS and elevating NO, linalool by blocking voltage dependent calcium channel (VDCC) and elevating NO, and carvone by blocking calcium influx through VDDC. Since the arsenic and mercury hypercontraction is mediated by increased ROS and depleted NO, we hypothesize that molecules which neutralize ROS or elevate NO will be better ameliorators. In line with this argument, we found eugenol to be the best ameliorator of arsenic and mercury hypercontraction followed by linalool and carvone. </p>","PeriodicalId":39619,"journal":{"name":"Journal of Smooth Muscle Research","volume":"50 ","pages":"93-102"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1540/jsmr.50.93","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Smooth Muscle Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1540/jsmr.50.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 14

Abstract

Acute and chronic exposure to arsenic and mercury is known to produce vasoconstriction. There is, however, no clarity concerning the pathways leading to this increased contraction. In this study we elicit and compare maximum contractility of rat aortas under resting conditions in the presence of arsenic and mercury, and delineate pathways mediating this effect. Phenylephrine (PE) induced hypercontraction of 37% and 32% were obtained when isolated aortic segments were exposed to 25 ?M As(III) and 6 nM Hg(II), respectively. Isometric contraction measurements in presence of apocynin, verapamil and sodium nitroprusside indicates that the major causes of increased contraction are reactive oxygen species (ROS) and depletion of nitric oxide (NO). Calcium influx plays a minor role in arsenic and mercury caused hypercontraction. In unexposed aorta, eugenol causes relaxation by inhibiting ROS and elevating NO, linalool by blocking voltage dependent calcium channel (VDCC) and elevating NO, and carvone by blocking calcium influx through VDDC. Since the arsenic and mercury hypercontraction is mediated by increased ROS and depleted NO, we hypothesize that molecules which neutralize ROS or elevate NO will be better ameliorators. In line with this argument, we found eugenol to be the best ameliorator of arsenic and mercury hypercontraction followed by linalool and carvone.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丁香酚、芳樟醇和香芹酮抑制As(III)和Hg(II)引起主动脉过度收缩。
已知急性和慢性接触砷和汞会产生血管收缩。然而,导致这种收缩加剧的途径尚不清楚。在这项研究中,我们引出并比较了在砷和汞存在的静息条件下大鼠主动脉的最大收缩力,并描绘了介导这种影响的途径。当离体主动脉段暴露于25 μ M As(III)和6 nM Hg(II)时,苯肾上腺素(PE)诱导的过度收缩率分别为37%和32%。在罗布宁、维拉帕米和硝普钠存在的情况下,等长收缩测量表明,收缩增加的主要原因是活性氧(ROS)和一氧化氮(NO)的消耗。钙内流在砷和汞引起的过度收缩中起次要作用。在未暴露的主动脉中,丁香酚通过抑制ROS和升高NO引起松弛,芳樟醇通过阻断电压依赖性钙通道(VDCC)和升高NO引起松弛,香芹酮通过阻断钙通过VDDC流入引起松弛。由于砷和汞的过度收缩是由ROS的增加和NO的耗尽介导的,我们假设中和ROS或升高NO的分子将是更好的改善剂。与此观点一致,我们发现丁香酚是砷和汞过度收缩的最佳改善剂,其次是芳樟醇和香芹酮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Smooth Muscle Research
Journal of Smooth Muscle Research Biochemistry, Genetics and Molecular Biology-Physiology
CiteScore
2.30
自引率
0.00%
发文量
7
审稿时长
10 weeks
期刊最新文献
The critical role of muscularis macrophages in modulating the enteric nervous system function and gastrointestinal motility Antispasmodic and antidiarrheal effects of Juniperus oxycedrus L. on the jejunum in rodents. Association of detrusor underactivity with aging and metabolic syndrome: suggestions from animal models. Antidiarrheal and antispasmodic effects of methanol fraction of Ammodaucus leucotrichus in gastrointestinal problems: an integrative medicine approach. Naloxone selectively inhibits vasoconstriction caused by phenylephrine but not endogenous noradrenaline in the rat mesenteric vasculature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1