A review paper on biomimetic calcium phosphate coatings.

Q3 Medicine Open Biomedical Engineering Journal Pub Date : 2015-02-27 eCollection Date: 2015-01-01 DOI:10.2174/1874120701509010056
X Lin, K de Groot, D Wang, Q Hu, D Wismeijer, Y Liu
{"title":"A review paper on biomimetic calcium phosphate coatings.","authors":"X Lin,&nbsp;K de Groot,&nbsp;D Wang,&nbsp;Q Hu,&nbsp;D Wismeijer,&nbsp;Y Liu","doi":"10.2174/1874120701509010056","DOIUrl":null,"url":null,"abstract":"<p><p>Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation induced by multinuclear cells, such as osteoclasts and foreign body giant cells, which mimics a physiologically similar release mode, to achieve sustained ectopic or orthotopic bone formation. Therefore, biomimetic calcium phosphate coatings are considered to be a promising delivery vehicle for osteogenic agents. In this review, we present an overview of biomimetic calcium phosphate coatings including their preparation techniques, physico-chemical properties, potential as drug carrier, and their pre-clinical application both in ectopic and orthotopic animal models. We briefly review some features of hydroxyapatite coatings and their clinical applications to gain insight into the clinical applications of biomimetic calcium phosphate coatings in the near future. </p>","PeriodicalId":39121,"journal":{"name":"Open Biomedical Engineering Journal","volume":"9 ","pages":"56-64"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2174/1874120701509010056","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Biomedical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874120701509010056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 38

Abstract

Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation induced by multinuclear cells, such as osteoclasts and foreign body giant cells, which mimics a physiologically similar release mode, to achieve sustained ectopic or orthotopic bone formation. Therefore, biomimetic calcium phosphate coatings are considered to be a promising delivery vehicle for osteogenic agents. In this review, we present an overview of biomimetic calcium phosphate coatings including their preparation techniques, physico-chemical properties, potential as drug carrier, and their pre-clinical application both in ectopic and orthotopic animal models. We briefly review some features of hydroxyapatite coatings and their clinical applications to gain insight into the clinical applications of biomimetic calcium phosphate coatings in the near future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
仿生磷酸钙涂层的研究进展。
仿生磷酸钙涂层具有生物相容性好、骨导电性好、制备简单等优点,已被广泛应用于骨再生和修复。在生理情况下,它们可以通过将成骨剂,如骨形态发生蛋白2 (BMP-2)掺入晶格结构中来实现成骨诱导。当BMP-2经历细胞介导的涂层降解时,如破骨细胞和异物巨细胞,仿生磷酸钙涂层能够控制、缓慢和局部释放BMP-2,模仿生理上相似的释放模式,实现持续的异位或正位骨形成。因此,仿生磷酸钙涂层被认为是一种很有前途的成骨剂递送载体。本文就仿生磷酸钙膜的制备技术、理化性质、作为药物载体的潜力及其在异位和正位动物模型中的临床前应用等方面进行综述。本文就羟基磷灰石涂层的一些特点及其临床应用进行综述,以期对仿生磷酸钙涂层的临床应用前景有所展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Biomedical Engineering Journal
Open Biomedical Engineering Journal Medicine-Medicine (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
4
期刊最新文献
F.E.M. Stress-Investigation of Scolios Apex. Characterization of the F-box Proteins FBXW2 and FBXL14 in the Initiation of Bone Regeneration in Transplants given to Nude Mice. Natural Sensations Evoked in Distal Extremities Using Surface Electrical Stimulation. Investigating the Conformation of S100β Protein Under Physiological Parameters Using Computational Modeling: A Clue for Rational Drug Design. Reliability, Learnability and Efficiency of Two Tools for Cement Crowns Retrieval in Dentistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1