Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2015-04-21 DOI:10.1038/ncomms7849
Brian T O'Callahan, Andrew C Jones, Jae Hyung Park, David H Cobden, Joanna M Atkin, Markus B Raschke
{"title":"Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.","authors":"Brian T O'Callahan,&nbsp;Andrew C Jones,&nbsp;Jae Hyung Park,&nbsp;David H Cobden,&nbsp;Joanna M Atkin,&nbsp;Markus B Raschke","doi":"10.1038/ncomms7849","DOIUrl":null,"url":null,"abstract":"<p><p>The insulator-metal transition (IMT) of vanadium dioxide (VO2) has remained a long-standing challenge in correlated electron physics since its discovery five decades ago. Most interpretations of experimental observations have implicitly assumed a homogeneous material response. Here we reveal inhomogeneous behaviour of even individual VO2 microcrystals using pump-probe microscopy and nanoimaging. The timescales of the ultrafast IMT vary from 40±8 fs, that is, shorter than a suggested phonon bottleneck, to 200±20 fs, uncorrelated with crystal size, transition temperature and initial insulating structural phase, with average value similar to results from polycrystalline thin-film studies. In combination with the observed sensitive variations in the thermal nanodomain IMT behaviour, this suggests that the IMT is highly susceptible to local changes in, for example, doping, defects and strain. Our results suggest an electronic mechanism dominating the photoinduced IMT, but also highlight the difficulty to deduce microscopic mechanisms when the true intrinsic material response is yet unclear. </p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":" ","pages":"6849"},"PeriodicalIF":15.7000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/ncomms7849","citationCount":"135","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/ncomms7849","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 135

Abstract

The insulator-metal transition (IMT) of vanadium dioxide (VO2) has remained a long-standing challenge in correlated electron physics since its discovery five decades ago. Most interpretations of experimental observations have implicitly assumed a homogeneous material response. Here we reveal inhomogeneous behaviour of even individual VO2 microcrystals using pump-probe microscopy and nanoimaging. The timescales of the ultrafast IMT vary from 40±8 fs, that is, shorter than a suggested phonon bottleneck, to 200±20 fs, uncorrelated with crystal size, transition temperature and initial insulating structural phase, with average value similar to results from polycrystalline thin-film studies. In combination with the observed sensitive variations in the thermal nanodomain IMT behaviour, this suggests that the IMT is highly susceptible to local changes in, for example, doping, defects and strain. Our results suggest an electronic mechanism dominating the photoinduced IMT, but also highlight the difficulty to deduce microscopic mechanisms when the true intrinsic material response is yet unclear.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VO2超快绝缘子到金属跃迁动力学的非均匀性。
二氧化钒(VO2)的绝缘体-金属跃迁(IMT)自50年前被发现以来一直是相关电子物理学中的一个长期挑战。大多数对实验观察的解释隐含地假设了均匀的物质响应。在这里,我们揭示了不均匀的行为,甚至个别VO2微晶体使用泵探针显微镜和纳米成像。超快IMT的时间尺度从40±8 fs(短于声子瓶颈)到200±20 fs(与晶体尺寸、转变温度和初始绝缘结构相无关),平均值与多晶薄膜研究结果相似。结合观察到的热纳米域IMT行为的敏感变化,这表明IMT对局部变化非常敏感,例如掺杂、缺陷和应变。我们的研究结果表明,电子机制主导了光诱导IMT,但也强调了在真正的内在材料响应尚不清楚的情况下推断微观机制的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Expression of antibody-drug conjugate targets in post-mortem samples of breast cancer metastases and normal tissue A topological superconductor tuned by electronic correlations mGluR4–NPDC1 complex mediates α-synuclein fibril-induced neurodegeneration Ultrasensitive multi-degree-of-freedom piezoionic sensor via synergistic hydrogel-ion interactions Calcium channel blockers increase the risk of aortic aneurysm and dissection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1