Cardiac regeneration and diabetes.

IF 2 Regenerative Medicine Research Pub Date : 2014-01-03 eCollection Date: 2014-12-01 DOI:10.1186/2050-490X-2-1
Lu Cai, Bradley B Keller
{"title":"Cardiac regeneration and diabetes.","authors":"Lu Cai,&nbsp;Bradley B Keller","doi":"10.1186/2050-490X-2-1","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence of diabetes continues to increase world-wide and is a leading cause of morbidity, mortality, and rapidly rising health care costs. Although strict glucose control combined with good pharmacological and non-pharmacologic interventions can increase diabetic patient life span, the frequency and mortality of myocardial ischemia and infarction remain drastically increased in diabetic patients. Therefore, more effective therapeutic approaches are urgently needed. Over the past 15 years, cellular repair of the injured adult heart has become the focus of a rapidly expanding broad spectrum of pre-clinical and clinical research. Recent clinical trials have achieved favorable initial endpoints with improvements in cardiac function and clinical symptoms following cellular therapy. Due to the increased risk of cardiac disease, cardiac regeneration may be one strategy to treat patients with diabetic cardiomyopathy and/or myocardial infarction. However, pre-clinical studies suggest that the diabetic myocardium may not be a favorable environment for the transplantation and survival of stem cells due to altered kinetics in cellular homing, survival, and in situ remodeling. Therefore, unique conditions in the diabetic myocardium will require novel solutions in order to increase the efficiency of cellular repair following ischemia and/or infarction. This review briefly summarizes some of the recent advances in cardiac regeneration in non-diabetic conditions and then provides an overview of some of the issues related to diabetes that must be addressed in the coming years. </p>","PeriodicalId":42378,"journal":{"name":"Regenerative Medicine Research","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2014-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/2050-490X-2-1","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Medicine Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/2050-490X-2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2014/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The prevalence of diabetes continues to increase world-wide and is a leading cause of morbidity, mortality, and rapidly rising health care costs. Although strict glucose control combined with good pharmacological and non-pharmacologic interventions can increase diabetic patient life span, the frequency and mortality of myocardial ischemia and infarction remain drastically increased in diabetic patients. Therefore, more effective therapeutic approaches are urgently needed. Over the past 15 years, cellular repair of the injured adult heart has become the focus of a rapidly expanding broad spectrum of pre-clinical and clinical research. Recent clinical trials have achieved favorable initial endpoints with improvements in cardiac function and clinical symptoms following cellular therapy. Due to the increased risk of cardiac disease, cardiac regeneration may be one strategy to treat patients with diabetic cardiomyopathy and/or myocardial infarction. However, pre-clinical studies suggest that the diabetic myocardium may not be a favorable environment for the transplantation and survival of stem cells due to altered kinetics in cellular homing, survival, and in situ remodeling. Therefore, unique conditions in the diabetic myocardium will require novel solutions in order to increase the efficiency of cellular repair following ischemia and/or infarction. This review briefly summarizes some of the recent advances in cardiac regeneration in non-diabetic conditions and then provides an overview of some of the issues related to diabetes that must be addressed in the coming years.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
心脏再生和糖尿病。
糖尿病的患病率在世界范围内持续增加,是发病率、死亡率和医疗费用迅速上升的主要原因。虽然严格的血糖控制结合良好的药物和非药物干预可以延长糖尿病患者的寿命,但糖尿病患者心肌缺血和梗死的频率和死亡率仍然急剧增加。因此,迫切需要更有效的治疗方法。在过去的15年里,成人心脏损伤的细胞修复已经成为临床前和临床研究的一个快速扩展的广泛领域。最近的临床试验取得了良好的初始终点,细胞治疗后心功能和临床症状得到改善。由于心脏疾病的风险增加,心脏再生可能是治疗糖尿病性心肌病和/或心肌梗死患者的一种策略。然而,临床前研究表明,由于细胞归巢、存活和原位重塑的动力学改变,糖尿病心肌可能不是干细胞移植和存活的有利环境。因此,糖尿病心肌的特殊情况需要新的解决方案,以提高缺血和/或梗死后细胞修复的效率。本文简要总结了非糖尿病患者心脏再生的一些最新进展,然后概述了未来几年必须解决的一些与糖尿病相关的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative Medicine Research
Regenerative Medicine Research MEDICINE, RESEARCH & EXPERIMENTAL-
自引率
0.00%
发文量
0
审稿时长
6 weeks
期刊最新文献
The effectiveness of mineralized plasmatic matrix in the closure of alveolar clefts with volumetric assessment. Liver regeneration in traditional Chinese medicine: advances and challenges. Siwei Jianbu decoction improves painful paclitaxel-induced peripheral neuropathy in mouse model by modulating the NF-κB and MAPK signaling pathways. Quality comparison between two different types of platelet-rich plasma for knee osteoarthritis. Implant-type tissue-engineered cartilage derived from human auricular chondrocyte may maintain cartilaginous property even under osteoinductive condition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1