Manal M Anwar, Radwan S El-Haggar, Wafaa A Zaghary
{"title":"Salmeterol Xinafoate.","authors":"Manal M Anwar, Radwan S El-Haggar, Wafaa A Zaghary","doi":"10.1016/bs.podrm.2015.02.002","DOIUrl":null,"url":null,"abstract":"<p><p>Salmeterol xinafoate is a potent and a long-acting β2-adrenoceptor agonist. It is prescribed for the treatment of severe persistent asthma and chronic obstructive pulmonary disease. Different methods were used to prepare (R)-(-)-salmeterol such as: mixing a sample of 4-benzyloxy-3-hydroxymethyl-ω-bromoacetophenone with sodium lauryl sulfate and the mixture was added to the microbial culture of Rhodotorula rubra, treatment of p-hydroxyacetophenone with Eschenmoser's salt and carbonate exchange resin followed by a sequence of supported reagents and scavenging agents or via Rh-catalyzed asymmetric transfer hydrogenation. The enantioselective synthesis of (S)-salmeterol was achieved via asymmetric reduction of the azidoketone 4 by Pichia angusta yeast. Physical characteristics of salmeterol xinafoate were confirmed via: X-ray powder diffraction pattern, thermal analysis and UV, vibrational, nuclear magnetic resonance, and mass spectroscopical data. Initial improvement in asthma control may occur within 30 min following oral inhalation of salmeterol in fixed combination with fluticasone propionate. Clinically important improvements are maintained for up to 12 h in most patients. It is extensively metabolized in the liver by hydroxylation, thus increased plasma concentrations may occur in patients with hepatic impairment.</p>","PeriodicalId":20802,"journal":{"name":"Profiles of drug substances, excipients, and related methodology","volume":"40 ","pages":"321-69"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.podrm.2015.02.002","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Profiles of drug substances, excipients, and related methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.podrm.2015.02.002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/4/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 8
Abstract
Salmeterol xinafoate is a potent and a long-acting β2-adrenoceptor agonist. It is prescribed for the treatment of severe persistent asthma and chronic obstructive pulmonary disease. Different methods were used to prepare (R)-(-)-salmeterol such as: mixing a sample of 4-benzyloxy-3-hydroxymethyl-ω-bromoacetophenone with sodium lauryl sulfate and the mixture was added to the microbial culture of Rhodotorula rubra, treatment of p-hydroxyacetophenone with Eschenmoser's salt and carbonate exchange resin followed by a sequence of supported reagents and scavenging agents or via Rh-catalyzed asymmetric transfer hydrogenation. The enantioselective synthesis of (S)-salmeterol was achieved via asymmetric reduction of the azidoketone 4 by Pichia angusta yeast. Physical characteristics of salmeterol xinafoate were confirmed via: X-ray powder diffraction pattern, thermal analysis and UV, vibrational, nuclear magnetic resonance, and mass spectroscopical data. Initial improvement in asthma control may occur within 30 min following oral inhalation of salmeterol in fixed combination with fluticasone propionate. Clinically important improvements are maintained for up to 12 h in most patients. It is extensively metabolized in the liver by hydroxylation, thus increased plasma concentrations may occur in patients with hepatic impairment.