Delroy Cameron, Ramakanth Kavuluru, Olivier Bodenreider, Pablo N Mendes, Amit P Sheth, Krishnaprasad Thirunarayan
{"title":"Semantic Predications for Complex Information Needs in Biomedical Literature.","authors":"Delroy Cameron, Ramakanth Kavuluru, Olivier Bodenreider, Pablo N Mendes, Amit P Sheth, Krishnaprasad Thirunarayan","doi":"10.1109/BIBM.2011.23","DOIUrl":null,"url":null,"abstract":"<p><p>Many complex information needs that arise in biomedical disciplines require exploring multiple documents in order to obtain information. While traditional information retrieval techniques that return a single ranked list of documents are quite common for such tasks, they may not always be adequate. The main issue is that ranked lists typically impose a significant burden on users to filter out irrelevant documents. Additionally, users must intuitively reformulate their search query when relevant documents have not been not highly ranked. Furthermore, even after interesting documents have been selected, very few mechanisms exist that enable document-to-document transitions. In this paper, we demonstrate the utility of assertions extracted from biomedical text (called semantic predications) to facilitate retrieving relevant documents for complex information needs. Our approach offers an alternative to query reformulation by establishing a framework for transitioning from one document to another. We evaluate this novel knowledge-driven approach using precision and recall metrics on the 2006 TREC Genomics Track.</p>","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"2011 ","pages":"512-519"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330970/pdf/nihms654702.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many complex information needs that arise in biomedical disciplines require exploring multiple documents in order to obtain information. While traditional information retrieval techniques that return a single ranked list of documents are quite common for such tasks, they may not always be adequate. The main issue is that ranked lists typically impose a significant burden on users to filter out irrelevant documents. Additionally, users must intuitively reformulate their search query when relevant documents have not been not highly ranked. Furthermore, even after interesting documents have been selected, very few mechanisms exist that enable document-to-document transitions. In this paper, we demonstrate the utility of assertions extracted from biomedical text (called semantic predications) to facilitate retrieving relevant documents for complex information needs. Our approach offers an alternative to query reformulation by establishing a framework for transitioning from one document to another. We evaluate this novel knowledge-driven approach using precision and recall metrics on the 2006 TREC Genomics Track.