Semantic Predications for Complex Information Needs in Biomedical Literature.

Delroy Cameron, Ramakanth Kavuluru, Olivier Bodenreider, Pablo N Mendes, Amit P Sheth, Krishnaprasad Thirunarayan
{"title":"Semantic Predications for Complex Information Needs in Biomedical Literature.","authors":"Delroy Cameron, Ramakanth Kavuluru, Olivier Bodenreider, Pablo N Mendes, Amit P Sheth, Krishnaprasad Thirunarayan","doi":"10.1109/BIBM.2011.23","DOIUrl":null,"url":null,"abstract":"<p><p>Many complex information needs that arise in biomedical disciplines require exploring multiple documents in order to obtain information. While traditional information retrieval techniques that return a single ranked list of documents are quite common for such tasks, they may not always be adequate. The main issue is that ranked lists typically impose a significant burden on users to filter out irrelevant documents. Additionally, users must intuitively reformulate their search query when relevant documents have not been not highly ranked. Furthermore, even after interesting documents have been selected, very few mechanisms exist that enable document-to-document transitions. In this paper, we demonstrate the utility of assertions extracted from biomedical text (called semantic predications) to facilitate retrieving relevant documents for complex information needs. Our approach offers an alternative to query reformulation by establishing a framework for transitioning from one document to another. We evaluate this novel knowledge-driven approach using precision and recall metrics on the 2006 TREC Genomics Track.</p>","PeriodicalId":73283,"journal":{"name":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","volume":"2011 ","pages":"512-519"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4330970/pdf/nihms654702.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Bioinformatics and Biomedicine workshops. IEEE International Conference on Bioinformatics and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2011.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many complex information needs that arise in biomedical disciplines require exploring multiple documents in order to obtain information. While traditional information retrieval techniques that return a single ranked list of documents are quite common for such tasks, they may not always be adequate. The main issue is that ranked lists typically impose a significant burden on users to filter out irrelevant documents. Additionally, users must intuitively reformulate their search query when relevant documents have not been not highly ranked. Furthermore, even after interesting documents have been selected, very few mechanisms exist that enable document-to-document transitions. In this paper, we demonstrate the utility of assertions extracted from biomedical text (called semantic predications) to facilitate retrieving relevant documents for complex information needs. Our approach offers an alternative to query reformulation by establishing a framework for transitioning from one document to another. We evaluate this novel knowledge-driven approach using precision and recall metrics on the 2006 TREC Genomics Track.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学文献中复杂信息需求的语义预测。
生物医学学科中出现的许多复杂信息需求都需要探索多个文档才能获得信息。虽然传统的信息检索技术通常会返回一个排序的文档列表,但对于这类任务来说,这种技术并不总是足够的。主要问题在于,排序列表通常会给用户带来很大的负担,需要过滤掉不相关的文档。此外,当相关文档排名不高时,用户必须凭直觉重新提出搜索查询。此外,即使在感兴趣的文档被选中后,也很少有机制能实现文档到文档的转换。在本文中,我们展示了从生物医学文本中提取的断言(称为语义谓词)在促进检索复杂信息需求的相关文档方面的效用。我们的方法通过建立一个从一个文档过渡到另一个文档的框架,提供了一种替代查询重构的方法。我们在 2006 年 TREC 基因组学赛道上使用精确度和召回率指标对这种新颖的知识驱动方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diurnal Pain Classification in Critically Ill Patients using Machine Learning on Accelerometry and Analgesic Data. Transmission cluster characteristics of global, regional, and lineage-specific SARS-CoV-2 phylogenies. Document-level DDI relation extraction with document-entity embedding The Network Pharmacological Mechanism of Yizhiningshen Oral Liquid in the Treatment of Tic Disorders Study on the Medication Law of Traditional Chinese medicine treating Lumbago based on TCM electronic medical record
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1