Comparative Analysis of Transmembrane Regulators of the Filamentous Growth Mitogen-Activated Protein Kinase Pathway Uncovers Functional and Regulatory Differences.

Eukaryotic Cell Pub Date : 2015-09-01 Epub Date: 2015-06-26 DOI:10.1128/EC.00085-15
Hema Adhikari, Lauren M Caccamise, Tanaya Pande, Paul J Cullen
{"title":"Comparative Analysis of Transmembrane Regulators of the Filamentous Growth Mitogen-Activated Protein Kinase Pathway Uncovers Functional and Regulatory Differences.","authors":"Hema Adhikari,&nbsp;Lauren M Caccamise,&nbsp;Tanaya Pande,&nbsp;Paul J Cullen","doi":"10.1128/EC.00085-15","DOIUrl":null,"url":null,"abstract":"<p><p>Filamentous growth is a microbial differentiation response that involves the concerted action of multiple signaling pathways. In budding yeast, one pathway that regulates filamentous growth is a Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway. Several transmembrane (TM) proteins regulate the filamentous growth pathway, including the signaling mucin Msb2p, the tetraspan osmosensor Sho1p, and an adaptor Opy2p. The TM proteins were compared to identify common and unique features. Msb2p, Sho1p, and Opy2p associated by coimmunoprecipitation analysis but showed predominantly different localization patterns. The different localization patterns of the proteins resulted in part from different rates of turnover from the plasma membrane (PM). In particular, Msb2p (and Opy2p) were turned over rapidly compared to Sho1p. Msb2p signaled from the PM, and its turnover was a rate-limiting step in MAPK signaling. Genetic analysis identified unique phenotypes of cells overexpressing the TM proteins. Therefore, each TM regulator of the filamentous growth pathway has its own regulatory pattern and specific function in regulating filamentous growth. This specialization may be important for fine-tuning and potentially diversifying the filamentation response. </p>","PeriodicalId":11891,"journal":{"name":"Eukaryotic Cell","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/EC.00085-15","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eukaryotic Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/EC.00085-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/6/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Filamentous growth is a microbial differentiation response that involves the concerted action of multiple signaling pathways. In budding yeast, one pathway that regulates filamentous growth is a Cdc42p-dependent mitogen-activated protein kinase (MAPK) pathway. Several transmembrane (TM) proteins regulate the filamentous growth pathway, including the signaling mucin Msb2p, the tetraspan osmosensor Sho1p, and an adaptor Opy2p. The TM proteins were compared to identify common and unique features. Msb2p, Sho1p, and Opy2p associated by coimmunoprecipitation analysis but showed predominantly different localization patterns. The different localization patterns of the proteins resulted in part from different rates of turnover from the plasma membrane (PM). In particular, Msb2p (and Opy2p) were turned over rapidly compared to Sho1p. Msb2p signaled from the PM, and its turnover was a rate-limiting step in MAPK signaling. Genetic analysis identified unique phenotypes of cells overexpressing the TM proteins. Therefore, each TM regulator of the filamentous growth pathway has its own regulatory pattern and specific function in regulating filamentous growth. This specialization may be important for fine-tuning and potentially diversifying the filamentation response.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丝状生长丝裂原激活蛋白激酶途径跨膜调控因子的比较分析揭示功能和调控差异。
丝状生长是一种微生物分化反应,涉及多种信号通路的协同作用。在出芽酵母中,调控丝状生长的一个途径是cdc42p依赖性丝裂原活化蛋白激酶(MAPK)途径。几种跨膜(TM)蛋白调节丝状生长途径,包括信号粘蛋白Msb2p,四跨膜渗透传感器Sho1p和适配器Opy2p。比较TM蛋白的共同特征和独特特征。Msb2p、Sho1p和Opy2p在共免疫沉淀分析中存在相关性,但表现出明显不同的定位模式。蛋白质的不同定位模式部分是由于质膜(PM)的不同周转速度。特别是,Msb2p(和Opy2p)与Sho1p相比,周转速度更快。Msb2p从PM发出信号,它的转换是MAPK信号中的一个限制速率的步骤。遗传分析鉴定出过表达TM蛋白的细胞的独特表型。因此,丝状生长途径的每个TM调控因子在调控丝状生长方面都有自己的调控模式和特定的功能。这种专门化可能对微调和潜在多样化的丝化反应很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Eukaryotic Cell
Eukaryotic Cell 生物-微生物学
自引率
0.00%
发文量
0
审稿时长
1 months
期刊介绍: Eukaryotic Cell (EC) focuses on eukaryotic microbiology and presents reports of basic research on simple eukaryotic microorganisms, such as yeasts, fungi, algae, protozoa, and social amoebae. The journal also covers viruses of these organisms and their organelles and their interactions with other living systems, where the focus is on the eukaryotic cell. Topics include: - Basic biology - Molecular and cellular biology - Mechanisms, and control, of developmental pathways - Structure and form inherent in basic biological processes - Cellular architecture - Metabolic physiology - Comparative genomics, biochemistry, and evolution - Population dynamics - Ecology
期刊最新文献
Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis. Saccharomyces cerevisiae Is Dependent on Vesicular Traffic between the Golgi Apparatus and the Vacuole When Inositolphosphorylceramide Synthase Aur1 Is Inactivated. Yeast Integral Membrane Proteins Apq12, Brl1, and Brr6 Form a Complex Important for Regulation of Membrane Homeostasis and Nuclear Pore Complex Biogenesis. Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions. Virulence-Associated Enzymes of Cryptococcus neoformans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1