Design of Abnormal Heart Sound Recognition System Based on HSMM and Deep Neural Network.

IF 1.3 Q4 ENGINEERING, BIOMEDICAL Medical Devices-Evidence and Research Pub Date : 2022-08-19 eCollection Date: 2022-01-01 DOI:10.2147/MDER.S368726
Hai Yin, Qiliang Ma, Junwei Zhuang, Wei Yu, Zhongyou Wang
{"title":"Design of Abnormal Heart Sound Recognition System Based on HSMM and Deep Neural Network.","authors":"Hai Yin,&nbsp;Qiliang Ma,&nbsp;Junwei Zhuang,&nbsp;Wei Yu,&nbsp;Zhongyou Wang","doi":"10.2147/MDER.S368726","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Heart sound signal is an important physiological signal of human body, and the identification and research of heart sound signal is of great significance.</p><p><strong>Methods: </strong>For abnormal heart sound signal recognition, an abnormal heart sound recognition system, combining hidden semi-Markov models (HSMM) with deep neural networks, is proposed. Firstly, HSMM is used to build a heart sound segmentation model to accurately segment the heart sound signal, and then the segmented heart sound signal is subjected to feature extraction. Finally, the trained deep neural network model is used for recognition.</p><p><strong>Results: </strong>Compared with other methods, this method has a relatively small amount of input feature data and high accuracy, fast recognition speed.</p><p><strong>Discussion: </strong>HSMM combined with deep neural network is expected to be deployed on smart mobile devices for telemedicine detection.</p>","PeriodicalId":47140,"journal":{"name":"Medical Devices-Evidence and Research","volume":" ","pages":"285-292"},"PeriodicalIF":1.3000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/16/b7/mder-15-285.PMC9398456.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Devices-Evidence and Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/MDER.S368726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Introduction: Heart sound signal is an important physiological signal of human body, and the identification and research of heart sound signal is of great significance.

Methods: For abnormal heart sound signal recognition, an abnormal heart sound recognition system, combining hidden semi-Markov models (HSMM) with deep neural networks, is proposed. Firstly, HSMM is used to build a heart sound segmentation model to accurately segment the heart sound signal, and then the segmented heart sound signal is subjected to feature extraction. Finally, the trained deep neural network model is used for recognition.

Results: Compared with other methods, this method has a relatively small amount of input feature data and high accuracy, fast recognition speed.

Discussion: HSMM combined with deep neural network is expected to be deployed on smart mobile devices for telemedicine detection.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于HSMM和深度神经网络的异常心音识别系统设计。
导读:心音信号是人体重要的生理信号,对心音信号的识别和研究具有重要意义。方法:针对异常心音信号的识别,提出了一种将隐半马尔可夫模型(HSMM)与深度神经网络相结合的异常心音识别系统。首先利用HSMM方法建立心音分割模型,对心音信号进行精确分割,然后对分割后的心音信号进行特征提取。最后,利用训练好的深度神经网络模型进行识别。结果:与其他方法相比,该方法输入特征数据量相对较少,且准确率高,识别速度快。讨论:HSMM结合深度神经网络有望部署在智能移动设备上,用于远程医疗检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical Devices-Evidence and Research
Medical Devices-Evidence and Research ENGINEERING, BIOMEDICAL-
CiteScore
2.80
自引率
0.00%
发文量
41
审稿时长
16 weeks
期刊最新文献
Initial Validation of the NOL Nociception Level Index® Monitoring System in Black and Multiracial People. Potential of Aluminum Drug Packages with Press-Through Packaging Considering Usability for a Wide Range of Users. The Application Effect of Fine Management Combined with Man-Machine Fixation Mode in Reducing the Attrition Rate of Laparoscopic Instruments-A Non-Randomized, Concurrent Controlled Study. Patients with Growth-Related Disorders and Caregivers Prefer the Somapacitan Device to the Somatrogon Device: Results from a Randomized Crossover Study Assessing Device Preference and Ease of Use Following Simulated Injections. May Glymphatic Drainage Improve Life Quality in Progressive Multiple Sclerosis Outpatients?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1