Evaluation of the Use of Sea Water as a Diluent for an Accelerated Hydrogen Peroxide Disinfectant for Inactivation of Avian Influenza Virus: A Surrogate for Infectious Salmon Anemia Virus.
Jiewen Guan, Maria Chan, Brian W Brooks, Elizabeth Rohonczy
{"title":"Evaluation of the Use of Sea Water as a Diluent for an Accelerated Hydrogen Peroxide Disinfectant for Inactivation of Avian Influenza Virus: A Surrogate for Infectious Salmon Anemia Virus.","authors":"Jiewen Guan, Maria Chan, Brian W Brooks, Elizabeth Rohonczy","doi":"10.1089/apb.20.0054","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Use of sea water as a diluent for disinfectants has been of practical interest for control of aquaculture disease outbreaks in sea where fresh water is limited. This study evaluated the use of natural sea water (NSW), artificial sea water (ASW), or standard hard water (SHW) as a diluent for preparation of accelerated hydrogen peroxide (AHP) solutions against an avian influenza virus, a surrogate for the infectious salmon anemia virus. <b>Methods:</b> AHP solutions containing 0.18%, 0.35%, or 0.44% (w/w) of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), corresponding to 1/40, 1/20, and 1/16 dilutions of the disinfectant concentrate, were evaluated at -20°C, 4°C, and 21°C. <b>Results:</b> When NSW was used as the diluent, a 0.35% H<sub>2</sub>O<sub>2</sub> concentration was required to inactivate ∼6 log<sub>10</sub> virus at 21°C in a 5-min contact time. When temperature dropped to 4°C, 0.44% H<sub>2</sub>O<sub>2</sub> in NSW was required to obtain a similar inactivation within a 5-min contact time. At -20°C, supplemented with antifreeze agents, the 0.44% H<sub>2</sub>O<sub>2</sub> in NSW solutions produced complete inactivation of 5.4 log<sub>10</sub> virus within a 10-min contact time. In comparison, lower H<sub>2</sub>O<sub>2</sub> concentrations and/or shorter contact times were needed to inactivate equal amounts of the virus at the same temperature when using SHW or ASW as a diluent to prepare disinfection solutions. <b>Conclusion:</b> The results suggested that NSW could be used as a diluent in disinfection solutions for virus inactivation as long as disinfectant concentrations and/or contact times are properly increased.</p>","PeriodicalId":7962,"journal":{"name":"Applied Biosafety","volume":"26 1","pages":"2-5"},"PeriodicalIF":0.5000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8869627/pdf/apb.20.0054.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biosafety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/apb.20.0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Use of sea water as a diluent for disinfectants has been of practical interest for control of aquaculture disease outbreaks in sea where fresh water is limited. This study evaluated the use of natural sea water (NSW), artificial sea water (ASW), or standard hard water (SHW) as a diluent for preparation of accelerated hydrogen peroxide (AHP) solutions against an avian influenza virus, a surrogate for the infectious salmon anemia virus. Methods: AHP solutions containing 0.18%, 0.35%, or 0.44% (w/w) of hydrogen peroxide (H2O2), corresponding to 1/40, 1/20, and 1/16 dilutions of the disinfectant concentrate, were evaluated at -20°C, 4°C, and 21°C. Results: When NSW was used as the diluent, a 0.35% H2O2 concentration was required to inactivate ∼6 log10 virus at 21°C in a 5-min contact time. When temperature dropped to 4°C, 0.44% H2O2 in NSW was required to obtain a similar inactivation within a 5-min contact time. At -20°C, supplemented with antifreeze agents, the 0.44% H2O2 in NSW solutions produced complete inactivation of 5.4 log10 virus within a 10-min contact time. In comparison, lower H2O2 concentrations and/or shorter contact times were needed to inactivate equal amounts of the virus at the same temperature when using SHW or ASW as a diluent to prepare disinfection solutions. Conclusion: The results suggested that NSW could be used as a diluent in disinfection solutions for virus inactivation as long as disinfectant concentrations and/or contact times are properly increased.
Applied BiosafetyEnvironmental Science-Management, Monitoring, Policy and Law
CiteScore
2.50
自引率
13.30%
发文量
27
期刊介绍:
Applied Biosafety (APB), sponsored by ABSA International, is a peer-reviewed, scientific journal committed to promoting global biosafety awareness and best practices to prevent occupational exposures and adverse environmental impacts related to biohazardous releases. APB provides a forum for exchanging sound biosafety and biosecurity initiatives by publishing original articles, review articles, letters to the editors, commentaries, and brief reviews. APB informs scientists, safety professionals, policymakers, engineers, architects, and governmental organizations. The journal is committed to publishing on topics significant in well-resourced countries as well as information relevant to underserved regions, engaging and cultivating the development of biosafety professionals globally.