Synthesis of Copper Nanoclusters and Their Application for Environmental Pollutant Probes: A Review.

IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL Critical reviews in analytical chemistry Pub Date : 2024-01-01 Epub Date: 2022-08-29 DOI:10.1080/10408347.2022.2116555
Peng Du, Jing Zhang, Jieyu Ma, Zhengkun Chu, Feng Cao, Jie Liu
{"title":"Synthesis of Copper Nanoclusters and Their Application for Environmental Pollutant Probes: A Review.","authors":"Peng Du, Jing Zhang, Jieyu Ma, Zhengkun Chu, Feng Cao, Jie Liu","doi":"10.1080/10408347.2022.2116555","DOIUrl":null,"url":null,"abstract":"<p><p>Copper nanoclusters (CuNCs) as a new type of probe for environmental contaminants are gaining increasing attention because of its low cost, superior water dispersibility, wide availability and excellent optical properties. Compared with the other probes such as quantum dots and organic dyes, CuNCs show much more potential in practical application for their excellent photostability, large Stokes shift, low toxicity and other preponderance, especially in the fields of biosensing and environmental monitoring. Recently, the template-assisted synthesis of metal nanoclusters (MNCs) has been widely studied. A variety of templates such as proteins, small thiol molecules, polymers, and DNA with different spatial configuration have been used for the preparation of MNCs so far. This review primarily described recent advances in CuNCs in terms of the synthesis of CuNCs from different templates, the methods to improve the fluorescence (FL) properties of CuNCs, as well as the basic detection mechanisms based on the FL properties or catalytic properties. Finally, to promote the practical application of CuNCs probes, the challenges and prospects of CuNCs multifunctional probes are also discussed.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2022.2116555","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Copper nanoclusters (CuNCs) as a new type of probe for environmental contaminants are gaining increasing attention because of its low cost, superior water dispersibility, wide availability and excellent optical properties. Compared with the other probes such as quantum dots and organic dyes, CuNCs show much more potential in practical application for their excellent photostability, large Stokes shift, low toxicity and other preponderance, especially in the fields of biosensing and environmental monitoring. Recently, the template-assisted synthesis of metal nanoclusters (MNCs) has been widely studied. A variety of templates such as proteins, small thiol molecules, polymers, and DNA with different spatial configuration have been used for the preparation of MNCs so far. This review primarily described recent advances in CuNCs in terms of the synthesis of CuNCs from different templates, the methods to improve the fluorescence (FL) properties of CuNCs, as well as the basic detection mechanisms based on the FL properties or catalytic properties. Finally, to promote the practical application of CuNCs probes, the challenges and prospects of CuNCs multifunctional probes are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米铜簇的合成及其在环境污染物探针中的应用:综述。
纳米铜簇(CuNCs)作为一种新型环境污染物探针,因其低成本、优异的水分散性、广泛的可用性和出色的光学特性而日益受到关注。与量子点和有机染料等其他探针相比,CuNCs 以其优异的光稳定性、较大的斯托克斯偏移、低毒性和其他优势,在实际应用中显示出更大的潜力,尤其是在生物传感和环境监测领域。近年来,模板辅助合成金属纳米团簇(MNCs)的方法被广泛研究。迄今为止,蛋白质、小硫醇分子、聚合物和不同空间构型的 DNA 等多种模板已被用于制备 MNCs。本综述主要从不同模板合成 CuNCs、改善 CuNCs 荧光(FL)特性的方法以及基于 FL 特性或催化特性的基本检测机制等方面介绍了 CuNCs 的最新进展。最后,为了促进 CuNCs 探针的实际应用,还讨论了 CuNCs 多功能探针面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.00
自引率
4.00%
发文量
137
审稿时长
6 months
期刊介绍: Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area. This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following: · chemical analysis; · instrumentation; · chemometrics; · analytical biochemistry; · medicinal analysis; · forensics; · environmental sciences; · applied physics; · and material science.
期刊最新文献
Comprehensive Application and Prospects of Surface-Enhanced Raman Spectroscopy in Natural Product Research. Electroanalysis of Statin Drugs: A Review on the Electrochemical Sensor Architectures Ranging from Classical to Modern Systems. Application Progress of Stable Isotope Dilution Analysis in Volatile Flavor Analysis of Food. Recent Advances in the Quantitative Determination of Protein Receptor-Ligand Interaction Kinetics. Unraveling the Metabolomics Mysteries in Camellia Oil: From Cognition to Application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1