Christos Tsagkaris, Muhammad Bilal, Irem Aktar, Youssef Aboufandi, Ahmet Tas, Abdullahi Tunde Aborode, Tarun Kumar Suvvari, Shoaib Ahmad, Anastasiia Shkodina, Rachana Phadke, Marwa S Emhamed, Atif Amin Baig, Athanasios Alexiou, Ghulam Md Ashraf, Mohammad Amjad Kamal
{"title":"Cytokine storm and neuropathological alterations in patients with neurological manifestations of COVID-19.","authors":"Christos Tsagkaris, Muhammad Bilal, Irem Aktar, Youssef Aboufandi, Ahmet Tas, Abdullahi Tunde Aborode, Tarun Kumar Suvvari, Shoaib Ahmad, Anastasiia Shkodina, Rachana Phadke, Marwa S Emhamed, Atif Amin Baig, Athanasios Alexiou, Ghulam Md Ashraf, Mohammad Amjad Kamal","doi":"10.2174/1567205019666220908084559","DOIUrl":null,"url":null,"abstract":"<p><p>The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), a respiratory pathogen with neuroinvasive potential. Neurological COVID-19 manifestations include loss of smell and taste, headache, dizziness, stroke, and potentially fatal encephalitis. Several studies found elevated proinflammatory cytokines such as TNF-α, IFN-γ, IL-6 IL-8, IL-10 IL-16, IL-17A, and IL-18 in severely and critically ill COVID-19 patients, which may persist even after apparent recovery from infection. Biomarker studies on CSF and plasma and serum from COVID-19 patients have also shown a high level of IL-6, intrathecal IgG, neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and tau protein. Emerging evidence on the matter has established the concept of COVID-19 associated neuroinflammation, in the context of COVID-19 associated cytokine storm. While the short-term implications of this condition are extensively documented, its long-term implications are yet to be understood. The association of the aforementioned cytokines with the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis, may increase COVID-19 patients' risk to develop neurodegenerative diseases. Analysis of proinflammatory cytokines and CSF biomarkers in patients with COVID-19 can contribute to the early detection of the disease's exacerbation, monitoring the neurological implications of the disease and devising risk scales, and identifying treatment targets.</p>","PeriodicalId":10810,"journal":{"name":"Current Alzheimer research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567205019666220908084559","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2), a respiratory pathogen with neuroinvasive potential. Neurological COVID-19 manifestations include loss of smell and taste, headache, dizziness, stroke, and potentially fatal encephalitis. Several studies found elevated proinflammatory cytokines such as TNF-α, IFN-γ, IL-6 IL-8, IL-10 IL-16, IL-17A, and IL-18 in severely and critically ill COVID-19 patients, which may persist even after apparent recovery from infection. Biomarker studies on CSF and plasma and serum from COVID-19 patients have also shown a high level of IL-6, intrathecal IgG, neurofilament light chain (NFL), glial fibrillary acidic protein (GFAP), and tau protein. Emerging evidence on the matter has established the concept of COVID-19 associated neuroinflammation, in the context of COVID-19 associated cytokine storm. While the short-term implications of this condition are extensively documented, its long-term implications are yet to be understood. The association of the aforementioned cytokines with the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, and amyotrophic lateral sclerosis, may increase COVID-19 patients' risk to develop neurodegenerative diseases. Analysis of proinflammatory cytokines and CSF biomarkers in patients with COVID-19 can contribute to the early detection of the disease's exacerbation, monitoring the neurological implications of the disease and devising risk scales, and identifying treatment targets.
期刊介绍:
Current Alzheimer Research publishes peer-reviewed frontier review, research, drug clinical trial studies and letter articles on all areas of Alzheimer’s disease. This multidisciplinary journal will help in understanding the neurobiology, genetics, pathogenesis, and treatment strategies of Alzheimer’s disease. The journal publishes objective reviews written by experts and leaders actively engaged in research using cellular, molecular, and animal models. The journal also covers original articles on recent research in fast emerging areas of molecular diagnostics, brain imaging, drug development and discovery, and clinical aspects of Alzheimer’s disease. Manuscripts are encouraged that relate to the synergistic mechanism of Alzheimer''s disease with other dementia and neurodegenerative disorders. Book reviews, meeting reports and letters-to-the-editor are also published. The journal is essential reading for researchers, educators and physicians with interest in age-related dementia and Alzheimer’s disease. Current Alzheimer Research provides a comprehensive ''bird''s-eye view'' of the current state of Alzheimer''s research for neuroscientists, clinicians, health science planners, granting, caregivers and families of this devastating disease.