Xin Gao, Guoyan Xin, Ya Tu, Xiaoping Liang, Huimin Yang, Hong Meng, Yumin Wang
{"title":"TARS2 Variants Cause Combination Oxidative Phosphorylation Deficiency-21: A Case Report and Literature Review.","authors":"Xin Gao, Guoyan Xin, Ya Tu, Xiaoping Liang, Huimin Yang, Hong Meng, Yumin Wang","doi":"10.1055/a-1949-9310","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of the study is to explore the clinical and genetic characteristics of the combined oxidative phosphorylation defect type 21 (COXPD21) caused by the TARS2 compound heterozygous pathogenic variants, and to improve clinicians' awareness of the disease.</p><p><strong>Methods: </strong>The proband was a girl of first birth, with repeated refractory hypokalemia, hearing impairment, developmental delay, intellectual disability, developmental retardation after infection, high limb muscle tension, and increased serum lactate as the clinical phenotype. The clinical performance, diagnosis, treatment process, and gene characteristics of COXPD21 caused by TARS2 of the case were analyzed, reviewed, and compared with the literature from the CNKI, Wanfang Data, and biomedical literature database (PubMed) until November 2021.</p><p><strong>Results: </strong>The child was diagnosed with COXPD21 after two heterozygous variants in the TARS2 gene were found via whole exome sequencing. One of the variants was c.1679(exon14) A > C (p.Asp560Ala) missense, derived from the mother, and the other was c.1036(exon10)C > T (p.Arg346Cys) missense, derived from the father. The literature was searched and reviewed with the keywords \"mitochondrial encephalomyopathy,\" \"TARS2,\" and \"combination oxidative phosphorylation deficiency type 21.\" A total of four complete domestic and foreign cases were collected from the literature search.</p><p><strong>Conclusion: </strong>COXPD21 onset by a complex heterozygous variant of TARS2 causes refractory hypokalemia, which is rarely reported in China and abroad.</p>","PeriodicalId":19421,"journal":{"name":"Neuropediatrics","volume":" ","pages":"178-182"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropediatrics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-1949-9310","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The aim of the study is to explore the clinical and genetic characteristics of the combined oxidative phosphorylation defect type 21 (COXPD21) caused by the TARS2 compound heterozygous pathogenic variants, and to improve clinicians' awareness of the disease.
Methods: The proband was a girl of first birth, with repeated refractory hypokalemia, hearing impairment, developmental delay, intellectual disability, developmental retardation after infection, high limb muscle tension, and increased serum lactate as the clinical phenotype. The clinical performance, diagnosis, treatment process, and gene characteristics of COXPD21 caused by TARS2 of the case were analyzed, reviewed, and compared with the literature from the CNKI, Wanfang Data, and biomedical literature database (PubMed) until November 2021.
Results: The child was diagnosed with COXPD21 after two heterozygous variants in the TARS2 gene were found via whole exome sequencing. One of the variants was c.1679(exon14) A > C (p.Asp560Ala) missense, derived from the mother, and the other was c.1036(exon10)C > T (p.Arg346Cys) missense, derived from the father. The literature was searched and reviewed with the keywords "mitochondrial encephalomyopathy," "TARS2," and "combination oxidative phosphorylation deficiency type 21." A total of four complete domestic and foreign cases were collected from the literature search.
Conclusion: COXPD21 onset by a complex heterozygous variant of TARS2 causes refractory hypokalemia, which is rarely reported in China and abroad.
期刊介绍:
For key insights into today''s practice of pediatric neurology, Neuropediatrics is the worldwide journal of choice. Original articles, case reports and panel discussions are the distinctive features of a journal that always keeps abreast of current developments and trends - the reason it has developed into an internationally recognized forum for specialists throughout the world.
Pediatricians, neurologists, neurosurgeons, and neurobiologists will find it essential reading.