LaSER: Language-specific event recommendation

Pub Date : 2023-01-01 DOI:10.1016/j.websem.2022.100759
Sara Abdollahi , Simon Gottschalk , Elena Demidova
{"title":"LaSER: Language-specific event recommendation","authors":"Sara Abdollahi ,&nbsp;Simon Gottschalk ,&nbsp;Elena Demidova","doi":"10.1016/j.websem.2022.100759","DOIUrl":null,"url":null,"abstract":"<div><p>While societal events often impact people worldwide, a significant fraction of events has a local focus that primarily affects specific language communities. Examples include national elections, the development of the Coronavirus pandemic in different countries, and local film festivals such as the <em>César Awards</em> in France and the <em>Moscow International Film Festival</em> in Russia. However, existing entity recommendation approaches do not sufficiently address the language context of recommendation. This article introduces the novel task of language-specific event recommendation, which aims to recommend events relevant to the user query in the language-specific context. This task can support essential information retrieval activities, including web navigation and exploratory search, considering the language context of user information needs. We propose <em>LaSER</em>, a novel approach toward language-specific event recommendation. <em>LaSER</em> blends the language-specific latent representations (embeddings) of entities and events and spatio-temporal event features in a learning to rank model. This model is trained on publicly available Wikipedia Clickstream data. The results of our user study demonstrate that <em>LaSER</em> outperforms state-of-the-art recommendation baselines by up to 33 percentage points in MAP@5 concerning the language-specific relevance of recommended events.</p></div>","PeriodicalId":75319,"journal":{"name":"","volume":"75 ","pages":"Article 100759"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9482171/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570826822000439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

While societal events often impact people worldwide, a significant fraction of events has a local focus that primarily affects specific language communities. Examples include national elections, the development of the Coronavirus pandemic in different countries, and local film festivals such as the César Awards in France and the Moscow International Film Festival in Russia. However, existing entity recommendation approaches do not sufficiently address the language context of recommendation. This article introduces the novel task of language-specific event recommendation, which aims to recommend events relevant to the user query in the language-specific context. This task can support essential information retrieval activities, including web navigation and exploratory search, considering the language context of user information needs. We propose LaSER, a novel approach toward language-specific event recommendation. LaSER blends the language-specific latent representations (embeddings) of entities and events and spatio-temporal event features in a learning to rank model. This model is trained on publicly available Wikipedia Clickstream data. The results of our user study demonstrate that LaSER outperforms state-of-the-art recommendation baselines by up to 33 percentage points in MAP@5 concerning the language-specific relevance of recommended events.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LaSER:针对特定语言的活动建议
虽然社会事件经常影响世界各地的人们,但很大一部分事件的焦点是当地,主要影响特定的语言社区。例子包括国家选举、冠状病毒疫情在不同国家的发展,以及法国塞萨尔奖和俄罗斯莫斯科国际电影节等地方电影节。然而,现有的实体建议方法没有充分处理建议的语言背景。本文介绍了一种新颖的特定语言事件推荐任务,旨在在特定语言的上下文中推荐与用户查询相关的事件。考虑到用户信息需求的语言背景,该任务可以支持基本的信息检索活动,包括网络导航和探索性搜索。我们提出了LaSER,这是一种针对特定语言的事件推荐的新方法。LaSER将实体和事件的语言特定的潜在表示(嵌入)与时空事件特征融合在学习排序模型中。这个模型是在公开的维基百科点击流数据上训练的。我们的用户研究结果表明,LaSER在MAP@5关于推荐事件的特定语言相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1