Keya Manshadi, Todd P Chang, Anita Schmidt, Jennifer Lau, Alyssa Rake, Phung Pham, Kenneth Illingworth, Joo Lee Song
{"title":"Validation of a 3-Dimensional-Printed Infant Tibia for Intraosseous Needle Insertion Training.","authors":"Keya Manshadi, Todd P Chang, Anita Schmidt, Jennifer Lau, Alyssa Rake, Phung Pham, Kenneth Illingworth, Joo Lee Song","doi":"10.1097/SIH.0000000000000689","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Current bone models used for pediatric intraosseous (IO) placement training are expensive or lack anatomic and/or functional fidelity. This technical report describes the development and validation of a 3-dimensional printed (3DP) tibia from a pediatric lower extremity computed tomography scan for IO procedural training.</p><p><strong>Methods: </strong>Multiple 3DP tibia models were printed using a dual-extrusion fused-filament fabrication printer. Models underwent iterative optimization until 2 final models, one of polypropylene (3DP clear) and the other of polylactic acid/polypropylene (3DP white), were selected. Using an exploratory sequential mixed-methods design, a novel IO bone model assessment tool was generated. Physicians then used the assessment tool to evaluate and compare common IO bone models to the novel 3DP models during IO needle insertion.</p><p><strong>Results: </strong>Thirty physicians evaluated the provided pediatric IO bone models. Compared with a chicken bone as a reference, the 3DP white bone had statistically significantly higher mean scores of anatomy, heft, sense of being anchored in the bone, quality of bone resistance, and \"give\" when interfaced with an IO needle. Twenty-two of the 30 participants ranked the 3DP white bone as either 1st or 2nd in terms of ranked preference of pediatric IO bone model. A 3DP white bone costs $1.10 to make.</p><p><strong>Conclusions: </strong>The 3DP IO tibia models created from real-life computed tomography images have high degrees of anatomic and functional realism. These IO training models are easily replicable, highly appraised, and can be printed at a fraction of the cost of commercially available plastic models.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":" ","pages":"56-63"},"PeriodicalIF":17.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1097/SIH.0000000000000689","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Current bone models used for pediatric intraosseous (IO) placement training are expensive or lack anatomic and/or functional fidelity. This technical report describes the development and validation of a 3-dimensional printed (3DP) tibia from a pediatric lower extremity computed tomography scan for IO procedural training.
Methods: Multiple 3DP tibia models were printed using a dual-extrusion fused-filament fabrication printer. Models underwent iterative optimization until 2 final models, one of polypropylene (3DP clear) and the other of polylactic acid/polypropylene (3DP white), were selected. Using an exploratory sequential mixed-methods design, a novel IO bone model assessment tool was generated. Physicians then used the assessment tool to evaluate and compare common IO bone models to the novel 3DP models during IO needle insertion.
Results: Thirty physicians evaluated the provided pediatric IO bone models. Compared with a chicken bone as a reference, the 3DP white bone had statistically significantly higher mean scores of anatomy, heft, sense of being anchored in the bone, quality of bone resistance, and "give" when interfaced with an IO needle. Twenty-two of the 30 participants ranked the 3DP white bone as either 1st or 2nd in terms of ranked preference of pediatric IO bone model. A 3DP white bone costs $1.10 to make.
Conclusions: The 3DP IO tibia models created from real-life computed tomography images have high degrees of anatomic and functional realism. These IO training models are easily replicable, highly appraised, and can be printed at a fraction of the cost of commercially available plastic models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.