{"title":"A Tutorial on Generative Adversarial Networks with Application to Classification of Imbalanced Data.","authors":"Yuxiao Huang, Kara G Fields, Yan Ma","doi":"10.1002/sam.11570","DOIUrl":null,"url":null,"abstract":"<p><p>A challenge unique to classification model development is imbalanced data. In a binary classification problem, class imbalance occurs when one class, the minority group, contains significantly fewer samples than the other class, the majority group. In imbalanced data, the minority class is often the class of interest (e.g., patients with disease). However, when training a classifier on imbalanced data, the model will exhibit bias towards the majority class and, in extreme cases, may ignore the minority class completely. A common strategy for addressing class imbalance is data augmentation. However, traditional data augmentation methods are associated with overfitting, where the model is fit to the noise in the data. In this tutorial we introduce an advanced method for data augmentation: Generative Adversarial Networks (GANs). The advantages of GANs over traditional data augmentation methods are illustrated using the Breast Cancer Wisconsin study. To promote the adoption of GANs for data augmentation, we present an end-to-end pipeline that encompasses the complete life cycle of a machine learning project along with alternatives and good practices both in the paper and in a separate video. Our code, data, full results and video tutorial are publicly available in the paper's github repository.</p>","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"15 5","pages":"543-552"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529000/pdf/nihms-1766432.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11570","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3
Abstract
A challenge unique to classification model development is imbalanced data. In a binary classification problem, class imbalance occurs when one class, the minority group, contains significantly fewer samples than the other class, the majority group. In imbalanced data, the minority class is often the class of interest (e.g., patients with disease). However, when training a classifier on imbalanced data, the model will exhibit bias towards the majority class and, in extreme cases, may ignore the minority class completely. A common strategy for addressing class imbalance is data augmentation. However, traditional data augmentation methods are associated with overfitting, where the model is fit to the noise in the data. In this tutorial we introduce an advanced method for data augmentation: Generative Adversarial Networks (GANs). The advantages of GANs over traditional data augmentation methods are illustrated using the Breast Cancer Wisconsin study. To promote the adoption of GANs for data augmentation, we present an end-to-end pipeline that encompasses the complete life cycle of a machine learning project along with alternatives and good practices both in the paper and in a separate video. Our code, data, full results and video tutorial are publicly available in the paper's github repository.
期刊介绍:
Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce.
The focus of the journal is on papers which satisfy one or more of the following criteria:
Solve data analysis problems associated with massive, complex datasets
Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research.
Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models
Provide survey to prominent research topics.