RegenX: an NLP recommendation engine for neuroregeneration topics over time.

Annals of Eye Science Pub Date : 2022-03-01 Epub Date: 2022-03-15 DOI:10.21037/aes-21-29
Shaan Khosla, Leila Abdelrahman, Joseph Johnson, Mohammad Samarah, Sanjoy K Bhattacharya
{"title":"RegenX: an NLP recommendation engine for neuroregeneration topics over time.","authors":"Shaan Khosla,&nbsp;Leila Abdelrahman,&nbsp;Joseph Johnson,&nbsp;Mohammad Samarah,&nbsp;Sanjoy K Bhattacharya","doi":"10.21037/aes-21-29","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In this investigation, we explore the literature regarding neuroregeneration from the 1700s to the present. The regeneration of central nervous system neurons or the regeneration of axons from cell bodies and their reconnection with other neurons remains a major hurdle. Injuries relating to war and accidents attracted medical professionals throughout early history to regenerate and reconnect nerves. Early literature till 1990 lacked specific molecular details and is likely provide some clues to conditions that promoted neuron and/or axon regeneration. This is an avenue for the application of natural language processing (NLP) to gain actionable intelligence. Post 1990 period saw an explosion of all molecular details. With the advent of genomic, transcriptomics, proteomics, and other omics-there is an emergence of big data sets and is another rich area for application of NLP. How the neuron and/or axon regeneration related keywords have changed over the years is a first step towards this endeavor.</p><p><strong>Methods: </strong>Specifically, this article curates over 600 published works in the field of neuroregeneration. We then apply a dynamic topic modeling algorithm based on the Latent Dirichlet allocation (LDA) algorithm to assess how topics cluster based on topics.</p><p><strong>Results: </strong>Based on how documents are assigned to topics, we then build a recommendation engine to assist researchers to access domain-specific literature based on how their search text matches to recommended document topics. The interface further includes interactive topic visualizations for researchers to understand how topics grow closer and further apart, and how intra-topic composition changes over time.</p><p><strong>Conclusions: </strong>We present a recommendation engine and interactive interface that enables dynamic topic modeling for neuronal regeneration.</p>","PeriodicalId":8400,"journal":{"name":"Annals of Eye Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a7/14/nihms-1794731.PMC9531894.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Eye Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/aes-21-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In this investigation, we explore the literature regarding neuroregeneration from the 1700s to the present. The regeneration of central nervous system neurons or the regeneration of axons from cell bodies and their reconnection with other neurons remains a major hurdle. Injuries relating to war and accidents attracted medical professionals throughout early history to regenerate and reconnect nerves. Early literature till 1990 lacked specific molecular details and is likely provide some clues to conditions that promoted neuron and/or axon regeneration. This is an avenue for the application of natural language processing (NLP) to gain actionable intelligence. Post 1990 period saw an explosion of all molecular details. With the advent of genomic, transcriptomics, proteomics, and other omics-there is an emergence of big data sets and is another rich area for application of NLP. How the neuron and/or axon regeneration related keywords have changed over the years is a first step towards this endeavor.

Methods: Specifically, this article curates over 600 published works in the field of neuroregeneration. We then apply a dynamic topic modeling algorithm based on the Latent Dirichlet allocation (LDA) algorithm to assess how topics cluster based on topics.

Results: Based on how documents are assigned to topics, we then build a recommendation engine to assist researchers to access domain-specific literature based on how their search text matches to recommended document topics. The interface further includes interactive topic visualizations for researchers to understand how topics grow closer and further apart, and how intra-topic composition changes over time.

Conclusions: We present a recommendation engine and interactive interface that enables dynamic topic modeling for neuronal regeneration.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RegenX:一个神经再生主题的NLP推荐引擎。
背景:在本研究中,我们探讨了从18世纪到现在关于神经再生的文献。中枢神经系统神经元的再生或细胞体轴突的再生及其与其他神经元的重新连接仍然是一个主要障碍。在整个早期历史中,与战争和事故有关的伤害吸引了医疗专业人员来再生和重新连接神经。直到1990年的早期文献缺乏具体的分子细节,可能为促进神经元和/或轴突再生的条件提供了一些线索。这是应用自然语言处理(NLP)获得可操作情报的途径。1990年后,所有分子细节都出现了爆炸式增长。随着基因组学、转录组学、蛋白质组学和其他组学的出现,出现了大数据集,这是NLP应用的另一个丰富领域。多年来,神经元和/或轴突再生相关的关键词是如何变化的,这是迈向这一努力的第一步。方法:具体地说,本文整理了600多篇神经再生领域的已发表论文。然后,我们应用基于潜狄利克雷分配(Latent Dirichlet allocation, LDA)算法的动态主题建模算法来评估主题如何基于主题聚类。结果:基于文档被分配到主题的方式,我们构建了一个推荐引擎,以帮助研究人员根据他们的搜索文本如何匹配推荐的文档主题来访问特定领域的文献。该界面还包括交互式主题可视化,供研究人员了解主题如何变得更近或更远,以及主题内的组成如何随时间变化。结论:我们提出了一个推荐引擎和交互界面,使神经元再生的动态主题建模成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
期刊最新文献
Designing a medical ethics curriculum in ophthalmology Medical and surgical approach to ocular surface reconstruction Improving the training abilities of ophthalmic educators: the Ophthalmology Foundation’s initiatives Interactivity software tools for teaching in ophthalmology Review: update on performance assessment and monitoring systems for ophthalmologists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1