{"title":"Phenine design for nanocarbon molecules.","authors":"Koki Ikemoto, Toshiya M Fukunaga, Hiroyuki Isobe","doi":"10.2183/pjab.98.020","DOIUrl":null,"url":null,"abstract":"<p><p>With the name \"phenine\" given to 1,3,5-trisubstituted benzene for a fundamental trigonal planar unit to weave nanometer-sized networks, a series of curved nanocarbon molecules have been designed and synthesized. Since the 6π-phenine units were amenable to modern biaryl coupling reactions mediated by transition metals, concise syntheses of >400π-nanocarbon molecules were readily achieved. In addition, the phenine design allowed for installing of heteroatoms and/or transition metals doped at specific positions of the large π-systems of the nanocarbon molecules. Fundamental tools were also developed to specify and describe the locations of defects/dopants, quantify pyramidalizations of trigonal panels and estimate molecular Gauss curvatures of the discrete surface. Unique features of phenine nanocarbons, such as stereoisomerism, entropy-driven molecular assembly and effects of dopants on electronic/magnetic characteristics, were revealed during the first half-decade of investigations.</p>","PeriodicalId":20707,"journal":{"name":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","volume":"98 8","pages":"379-400"},"PeriodicalIF":4.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3d/9e/pjab-98-379.PMC9614209.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Japan Academy. Series B, Physical and Biological Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.2183/pjab.98.020","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
With the name "phenine" given to 1,3,5-trisubstituted benzene for a fundamental trigonal planar unit to weave nanometer-sized networks, a series of curved nanocarbon molecules have been designed and synthesized. Since the 6π-phenine units were amenable to modern biaryl coupling reactions mediated by transition metals, concise syntheses of >400π-nanocarbon molecules were readily achieved. In addition, the phenine design allowed for installing of heteroatoms and/or transition metals doped at specific positions of the large π-systems of the nanocarbon molecules. Fundamental tools were also developed to specify and describe the locations of defects/dopants, quantify pyramidalizations of trigonal panels and estimate molecular Gauss curvatures of the discrete surface. Unique features of phenine nanocarbons, such as stereoisomerism, entropy-driven molecular assembly and effects of dopants on electronic/magnetic characteristics, were revealed during the first half-decade of investigations.
期刊介绍:
The Proceedings of the Japan Academy Ser. B (PJA-B) is a scientific publication of the Japan Academy with a 90-year history, and covers all branches of natural sciences, except for mathematics, which is covered by the PJA-A. It is published ten times a year and is distributed widely throughout the world and can be read and obtained free of charge through the world wide web.