Clinical and molecular characterization of 1q43q44 deletion and corpus callosum malformations: 2 new cases and literature review.

IF 1.3 4区 生物学 Q4 GENETICS & HEREDITY Molecular Cytogenetics Pub Date : 2022-10-03 DOI:10.1186/s13039-022-00620-2
Bochra Khadija, Khouloud Rjiba, Sarra Dimassi, Wafa Dahleb, Molka Kammoun, Hanen Hannechi, Najoua Miladi, Neziha Gouider-Khouja, Ali Saad, Soumaya Mougou-Zerelli
{"title":"Clinical and molecular characterization of 1q43q44 deletion and corpus callosum malformations: 2 new cases and literature review.","authors":"Bochra Khadija,&nbsp;Khouloud Rjiba,&nbsp;Sarra Dimassi,&nbsp;Wafa Dahleb,&nbsp;Molka Kammoun,&nbsp;Hanen Hannechi,&nbsp;Najoua Miladi,&nbsp;Neziha Gouider-Khouja,&nbsp;Ali Saad,&nbsp;Soumaya Mougou-Zerelli","doi":"10.1186/s13039-022-00620-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Corpus callosum malformations (CCM) represent one of the most common congenital cerebral malformations with a prevalence of around one for 4000 births. There have been at least 230 reports in the literature concerning 1q43q44 deletions of varying sizes discovered using chromosomal microarrays. This disorder is distinguished by global developmental delay, seizures, hypotonia, corpus callosum defects, and significant craniofacial dysmorphism. In this study, we present a molecular cytogenetic analysis of 2 Tunisian patients with corpus callosum malformations. Patient 1 was a boy of 3 years old who presented psychomotor retardation, microcephaly, behavioral problems, interventricular septal defect, moderate pulmonary stenosis, hypospadias, and total CCA associated with delayed encephalic myelination. Patient 2 was a boy of 9 months. He presented a facial dysmorphia, a psychomotor retardation, an axial hypotonia, a quadri pyramidal syndrome, a micropenis, and HCC associated with decreased volume of the periventricular white matter. Both the array comparative genomic hybridization and fluorescence in situ hybridization techniques were used.</p><p><strong>Results: </strong>Array CGH analysis reveals that patient 1 had the greater deletion size (11,7 Mb) at 1q43. The same region harbors a 2,7 Mb deletion in patient 2. Here, we notice that the larger the deletion, the more genes are likely to be involved, and the more severe the phenotype is likely to be. In both patients, the commonly deleted region includes six genes: PLD5, AKT3, ZNF238, HNRNPU, SDCCAG8 and CEP170. Based on the role of the ZNF238 gene in neuronal proliferation, migration, and cortex development, we hypothesized that the common deletion of ZNF238 in both patients seems to be the most responsible for corpus callosum malformations. Its absence may directly cause CCM. In addition, due to their high expression in the brain, PLD5 and FMN2 could modulate in the CCM phenotype.</p><p><strong>Conclusion: </strong>Our findings support and improve the complex genotype-phenotype correlations previously reported in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of several genes related to this pathology.</p>","PeriodicalId":19099,"journal":{"name":"Molecular Cytogenetics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9528098/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cytogenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13039-022-00620-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 2

Abstract

Background: Corpus callosum malformations (CCM) represent one of the most common congenital cerebral malformations with a prevalence of around one for 4000 births. There have been at least 230 reports in the literature concerning 1q43q44 deletions of varying sizes discovered using chromosomal microarrays. This disorder is distinguished by global developmental delay, seizures, hypotonia, corpus callosum defects, and significant craniofacial dysmorphism. In this study, we present a molecular cytogenetic analysis of 2 Tunisian patients with corpus callosum malformations. Patient 1 was a boy of 3 years old who presented psychomotor retardation, microcephaly, behavioral problems, interventricular septal defect, moderate pulmonary stenosis, hypospadias, and total CCA associated with delayed encephalic myelination. Patient 2 was a boy of 9 months. He presented a facial dysmorphia, a psychomotor retardation, an axial hypotonia, a quadri pyramidal syndrome, a micropenis, and HCC associated with decreased volume of the periventricular white matter. Both the array comparative genomic hybridization and fluorescence in situ hybridization techniques were used.

Results: Array CGH analysis reveals that patient 1 had the greater deletion size (11,7 Mb) at 1q43. The same region harbors a 2,7 Mb deletion in patient 2. Here, we notice that the larger the deletion, the more genes are likely to be involved, and the more severe the phenotype is likely to be. In both patients, the commonly deleted region includes six genes: PLD5, AKT3, ZNF238, HNRNPU, SDCCAG8 and CEP170. Based on the role of the ZNF238 gene in neuronal proliferation, migration, and cortex development, we hypothesized that the common deletion of ZNF238 in both patients seems to be the most responsible for corpus callosum malformations. Its absence may directly cause CCM. In addition, due to their high expression in the brain, PLD5 and FMN2 could modulate in the CCM phenotype.

Conclusion: Our findings support and improve the complex genotype-phenotype correlations previously reported in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of several genes related to this pathology.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1q43q44缺失与胼胝体畸形的临床及分子特征:2例新病例及文献复习
背景:胼胝体畸形(CCM)是最常见的先天性脑畸形之一,患病率约为1 / 4000。文献中至少有230篇关于使用染色体微阵列发现不同大小的1q43q44缺失的报道。这种疾病的特点是全面发育迟缓,癫痫发作,肌张力低下,胼胝体缺陷和明显的颅面畸形。在这项研究中,我们提出了一个分子细胞遗传学分析2突尼斯患者的胼胝体畸形。患者1是一名3岁的男孩,表现为精神运动迟缓、小头畸形、行为问题、室间隔缺损、中度肺狭窄、尿道下裂和与迟发性脑髓鞘形成相关的全CCA。患者2是一名9个月大的男孩。他表现为面部畸形、精神运动迟缓、轴向张力低下、四锥体综合征、小阴茎和伴有脑室周围白质体积减少的HCC。采用了阵列比较基因组杂交和荧光原位杂交技术。结果:阵列CGH分析显示,患者1在1q43有更大的缺失大小(11.7 Mb)。患者2的相同区域有27mb的缺失。在这里,我们注意到,缺失越大,可能涉及的基因越多,并且表型可能越严重。在这两例患者中,常见的缺失区域包括6个基因:PLD5、AKT3、ZNF238、HNRNPU、SDCCAG8和CEP170。基于ZNF238基因在神经元增殖、迁移和皮层发育中的作用,我们假设两例患者中ZNF238的共同缺失似乎是导致胼胝体畸形的主要原因。它的缺失可能直接导致CCM。此外,由于PLD5和FMN2在大脑中的高表达,它们可以调节CCM表型。结论:我们的研究结果支持并改进了先前报道的1 / 4微缺失综合征复杂的基因型-表型相关性,并更准确地定义了与该病理相关的几种基因遗传改变相关的神经发育表型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Cytogenetics
Molecular Cytogenetics GENETICS & HEREDITY-
CiteScore
2.60
自引率
7.70%
发文量
49
审稿时长
>12 weeks
期刊介绍: Molecular Cytogenetics encompasses all aspects of chromosome biology and the application of molecular cytogenetic techniques in all areas of biology and medicine, including structural and functional organization of the chromosome and nucleus, genome variation, expression and evolution, chromosome abnormalities and genomic variations in medical genetics and tumor genetics. Molecular Cytogenetics primarily defines a large set of the techniques that operate either with the entire genome or with specific targeted DNA sequences. Topical areas include, but are not limited to: -Structural and functional organization of chromosome and nucleus- Genome variation, expression and evolution- Animal and plant molecular cytogenetics and genomics- Chromosome abnormalities and genomic variations in clinical genetics- Applications in preimplantation, pre- and post-natal diagnosis- Applications in the central nervous system, cancer and haematology research- Previously unreported applications of molecular cytogenetic techniques- Development of new techniques or significant enhancements to established techniques. This journal is a source for numerous scientists all over the world, who wish to improve or introduce molecular cytogenetic techniques into their practice.
期刊最新文献
Precision oncology platforms: practical strategies for genomic database utilization in cancer treatment. False-positive XXY results by interphase FISH in cytogenetically normal XX individuals: two cases highlighting the necessity of additional laboratory follow-up. Copy number variation heterogeneity reveals biological inconsistency in hierarchical cancer classifications. Detection of regions of homozygosity in an unusual case of frontonasal dysplasia. Insights into avian molecular cytogenetics-with reptilian comparisons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1