Cerium oxide nanoparticles modulate liver X receptor and short heterodimer partner, and attenuate liver steatosis and steatohepatitis in a rat model of postmenopausal obesity.
Fatma M Lebda, Sahar M El Agaty, Radwa H Ali, Ghada Galal Hamam, Aliaa M Abd El-Monem, Noha N Lasheen
{"title":"Cerium oxide nanoparticles modulate liver X receptor and short heterodimer partner, and attenuate liver steatosis and steatohepatitis in a rat model of postmenopausal obesity.","authors":"Fatma M Lebda, Sahar M El Agaty, Radwa H Ali, Ghada Galal Hamam, Aliaa M Abd El-Monem, Noha N Lasheen","doi":"10.4149/gpb_202235","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to investigate the effect of cerium oxide nanoparticles (CeO2-NPs) on non-alcoholic fatty liver disease in postmenopausal obesity and the underlying mechanisms.64 adult female rats were allocated into Sham, ovariectomized (OVX), high-fat high-fructose dietfed- OVX (HFHF-OVX), and HFHF-OVX-CeO2-NPs-treated (CeO2-HFHF-OVX) groups. OVX and HFHF-OVX rats presented a significant increase in overall and visceral obesity, dyslipidemia, liver enzymes, serum malondialdehyde, liver TNF-α, TGF-β1 and free fatty acids, liver X receptor (LXR) expression associated with decreased serum total antioxidant capacity and liver short heterodimer partner (SHP) expression vs. Sham group. Also, histomorphometric studies displayed a significant higher scores of liver steatosis, inflammation and fibrosis. All these parameters were significantly improved by CeO2-NPs treatment in CeO2-HFHF-OVX vs. HFHF-OVX rats. Thus, CeO2-NPs treatment ameliorates liver steatosis, steatohepatitis, and fibrosis in postmenopausal obese rats via alleviation of obesity, dyslipidemia, modulating liver genes involved in lipid metabolism (LXR and SHP), decreasing liver lipogenesis besides its antioxidant and anti-inflammatory effects.</p>","PeriodicalId":12514,"journal":{"name":"General physiology and biophysics","volume":"41 5","pages":"431-446"},"PeriodicalIF":1.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General physiology and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_202235","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
This study aimed to investigate the effect of cerium oxide nanoparticles (CeO2-NPs) on non-alcoholic fatty liver disease in postmenopausal obesity and the underlying mechanisms.64 adult female rats were allocated into Sham, ovariectomized (OVX), high-fat high-fructose dietfed- OVX (HFHF-OVX), and HFHF-OVX-CeO2-NPs-treated (CeO2-HFHF-OVX) groups. OVX and HFHF-OVX rats presented a significant increase in overall and visceral obesity, dyslipidemia, liver enzymes, serum malondialdehyde, liver TNF-α, TGF-β1 and free fatty acids, liver X receptor (LXR) expression associated with decreased serum total antioxidant capacity and liver short heterodimer partner (SHP) expression vs. Sham group. Also, histomorphometric studies displayed a significant higher scores of liver steatosis, inflammation and fibrosis. All these parameters were significantly improved by CeO2-NPs treatment in CeO2-HFHF-OVX vs. HFHF-OVX rats. Thus, CeO2-NPs treatment ameliorates liver steatosis, steatohepatitis, and fibrosis in postmenopausal obese rats via alleviation of obesity, dyslipidemia, modulating liver genes involved in lipid metabolism (LXR and SHP), decreasing liver lipogenesis besides its antioxidant and anti-inflammatory effects.
期刊介绍:
General Physiology and Biophysics is devoted to the publication of original research papers concerned with general physiology, biophysics and biochemistry at the cellular and molecular level and is published quarterly by the Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences.