Quantile regression for count data: jittering versus regression coefficients modelling in the analysis of credits earned by university students after remote teaching.
{"title":"Quantile regression for count data: jittering versus regression coefficients modelling in the analysis of credits earned by university students after remote teaching.","authors":"Viviana Carcaiso, Leonardo Grilli","doi":"10.1007/s10260-022-00661-2","DOIUrl":null,"url":null,"abstract":"<p><p>The extension of quantile regression to count data raises several issues. We compare the traditional approach, based on transforming the count variable using jittering, with a recently proposed approach in which the coefficients of quantile regression are modelled by parametric functions. We exploit both methods to analyse university students' data to evaluate the effect of emergency remote teaching due to COVID-19 on the number of credits earned by the students. The coefficients modelling approach performs a smoothing that is especially convenient in the tails of the distribution, preventing abrupt changes in the point estimates and increasing precision. Nonetheless, model selection is challenging because of the wide range of options and the limited availability of diagnostic tools. Thus the jittering approach remains fundamental to guide the choice of the parametric functions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10260-022-00661-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The extension of quantile regression to count data raises several issues. We compare the traditional approach, based on transforming the count variable using jittering, with a recently proposed approach in which the coefficients of quantile regression are modelled by parametric functions. We exploit both methods to analyse university students' data to evaluate the effect of emergency remote teaching due to COVID-19 on the number of credits earned by the students. The coefficients modelling approach performs a smoothing that is especially convenient in the tails of the distribution, preventing abrupt changes in the point estimates and increasing precision. Nonetheless, model selection is challenging because of the wide range of options and the limited availability of diagnostic tools. Thus the jittering approach remains fundamental to guide the choice of the parametric functions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.