A review of artificial intelligence in prostate cancer detection on imaging.

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-10-10 eCollection Date: 2022-01-01 DOI:10.1177/17562872221128791
Indrani Bhattacharya, Yash S Khandwala, Sulaiman Vesal, Wei Shao, Qianye Yang, Simon J C Soerensen, Richard E Fan, Pejman Ghanouni, Christian A Kunder, James D Brooks, Yipeng Hu, Mirabela Rusu, Geoffrey A Sonn
{"title":"A review of artificial intelligence in prostate cancer detection on imaging.","authors":"Indrani Bhattacharya, Yash S Khandwala, Sulaiman Vesal, Wei Shao, Qianye Yang, Simon J C Soerensen, Richard E Fan, Pejman Ghanouni, Christian A Kunder, James D Brooks, Yipeng Hu, Mirabela Rusu, Geoffrey A Sonn","doi":"10.1177/17562872221128791","DOIUrl":null,"url":null,"abstract":"<p><p>A multitude of studies have explored the role of artificial intelligence (AI) in providing diagnostic support to radiologists, pathologists, and urologists in prostate cancer detection, risk-stratification, and management. This review provides a comprehensive overview of relevant literature regarding the use of AI models in (1) detecting prostate cancer on radiology images (magnetic resonance and ultrasound imaging), (2) detecting prostate cancer on histopathology images of prostate biopsy tissue, and (3) assisting in supporting tasks for prostate cancer detection (prostate gland segmentation, MRI-histopathology registration, MRI-ultrasound registration). We discuss both the potential of these AI models to assist in the clinical workflow of prostate cancer diagnosis, as well as the current limitations including variability in training data sets, algorithms, and evaluation criteria. We also discuss ongoing challenges and what is needed to bridge the gap between academic research on AI for prostate cancer and commercial solutions that improve routine clinical care.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":" ","pages":"17562872221128791"},"PeriodicalIF":4.7000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/71/74/10.1177_17562872221128791.PMC9554123.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17562872221128791","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A multitude of studies have explored the role of artificial intelligence (AI) in providing diagnostic support to radiologists, pathologists, and urologists in prostate cancer detection, risk-stratification, and management. This review provides a comprehensive overview of relevant literature regarding the use of AI models in (1) detecting prostate cancer on radiology images (magnetic resonance and ultrasound imaging), (2) detecting prostate cancer on histopathology images of prostate biopsy tissue, and (3) assisting in supporting tasks for prostate cancer detection (prostate gland segmentation, MRI-histopathology registration, MRI-ultrasound registration). We discuss both the potential of these AI models to assist in the clinical workflow of prostate cancer diagnosis, as well as the current limitations including variability in training data sets, algorithms, and evaluation criteria. We also discuss ongoing challenges and what is needed to bridge the gap between academic research on AI for prostate cancer and commercial solutions that improve routine clinical care.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能在前列腺癌成像检测中的应用综述。
大量研究探讨了人工智能(AI)在为放射科医生、病理科医生和泌尿科医生提供前列腺癌检测、风险分级和管理方面的诊断支持中的作用。本综述全面概述了人工智能模型在以下方面应用的相关文献:(1) 在放射学图像(磁共振和超声成像)上检测前列腺癌;(2) 在前列腺活检组织的组织病理学图像上检测前列腺癌;(3) 协助支持前列腺癌检测任务(前列腺腺体分割、磁共振成像-组织病理学配准、磁共振成像-超声配准)。我们既讨论了这些人工智能模型在协助前列腺癌诊断临床工作流程方面的潜力,也讨论了目前存在的局限性,包括训练数据集、算法和评估标准方面的差异。我们还讨论了当前面临的挑战,以及如何缩小前列腺癌人工智能学术研究与改善常规临床护理的商业解决方案之间的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Pullulan Coating Preserves High Conductivity in Cable Bacteria Wires. Polypyrrole-Coated Microneedle Platform for Offline Electrochemical Detection of Interferon-Alpha in Interstitial Fluid. 2D MXene-Based Mesoporous Silica Nanoplatform for Autophagy Inhibition and Enhanced Photothermal Therapy of Hepatoblastoma. Chia Seed Mucilage-Based Bilayer Sponges Containing Zinc Oxide Nanoparticles for Wound Dressing. Quaternized Chitosan-Ferulic Acid-Based Nanomicelles for Dimethoxycurcumin Delivery and Synergistic Colorectal Adenocarcinoma Therapy with 5-Fluorouracil.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1