Heusler compounds and spintronics

IF 4.5 2区 材料科学 Q1 CRYSTALLOGRAPHY Progress in Crystal Growth and Characterization of Materials Pub Date : 2016-06-01 DOI:10.1016/j.pcrysgrow.2016.04.020
Chris J. Palmstrøm
{"title":"Heusler compounds and spintronics","authors":"Chris J. Palmstrøm","doi":"10.1016/j.pcrysgrow.2016.04.020","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Heusler compounds<span><span> are a large group of intermetallic compounds<span> with over 1000 members with similar crystal structures having a vast array of tunable properties. These properties depend on the number of valence electrons per formula unit allowing tuning of properties through composition and alloying. The Heusler lattice parameters span many </span></span>metal oxides and semiconductors and their crystal structures are closely related. For </span></span>spintronic<span> applications, the magnetic and half-metallic properties, in particular, are of great interest. In this paper the electronic and magnetic properties of Heusler compounds are discussed as well as the importance of composition and defect control on tailoring their properties. Examples of applications include the great success of Heusler magnetic </span></span>tunnel junction<span> in metallic spintronic devices. The potential of going beyond metallic spintronics to the integration of Heusler compounds with III–V semiconductors for semiconductor spintronics device physics and technology, the tuning of magnetic properties, and the fabrication of Heusler compound </span></span>heterostructures and </span>superlattices are also discussed.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 371-397"},"PeriodicalIF":4.5000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.020","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897416300237","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 94

Abstract

Heusler compounds are a large group of intermetallic compounds with over 1000 members with similar crystal structures having a vast array of tunable properties. These properties depend on the number of valence electrons per formula unit allowing tuning of properties through composition and alloying. The Heusler lattice parameters span many metal oxides and semiconductors and their crystal structures are closely related. For spintronic applications, the magnetic and half-metallic properties, in particular, are of great interest. In this paper the electronic and magnetic properties of Heusler compounds are discussed as well as the importance of composition and defect control on tailoring their properties. Examples of applications include the great success of Heusler magnetic tunnel junction in metallic spintronic devices. The potential of going beyond metallic spintronics to the integration of Heusler compounds with III–V semiconductors for semiconductor spintronics device physics and technology, the tuning of magnetic properties, and the fabrication of Heusler compound heterostructures and superlattices are also discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
赫斯勒化合物和自旋电子学
Heusler化合物是一大类金属间化合物,有超过1000个成员具有相似的晶体结构,具有大量可调性质。这些性质取决于每个公式单位的价电子数,允许通过成分和合金化来调整性质。赫斯勒晶格参数横跨许多金属氧化物和半导体,它们的晶体结构密切相关。对于自旋电子的应用,磁性和半金属性质尤其引起了极大的兴趣。本文讨论了Heusler化合物的电子和磁性能,以及组成和缺陷控制对调整其性能的重要性。应用的例子包括赫斯勒磁隧道结在金属自旋电子器件中的巨大成功。本文还讨论了从金属自旋电子学到半导体自旋电子学器件物理和技术、磁性调谐以及Heusler化合物异质结构和超晶格的制造等方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in Crystal Growth and Characterization of Materials
Progress in Crystal Growth and Characterization of Materials 工程技术-材料科学:表征与测试
CiteScore
8.80
自引率
2.00%
发文量
10
审稿时长
1 day
期刊介绍: Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research. Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.
期刊最新文献
Novel enhancing materials for biosensor design: The case studies of erbium-, gadolinium- and strontium-doped Ca10(PO4)6(OH)2 hydroxyapatite Editorial Board Electrospray crystallization: A review on submicrometric and nanosized crystal synthesis Editorial Board The equation of life in the Universe: Biomorphs as reminiscence of the first forms of life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1