An efficient algorithm for updating regular expression indexes in RDF databases.

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.066767
Jinsoo Lee, Romans Kasperovics, Wook-Shin Han, Jeong-Hoon Lee, Min Soo Kim, Hune Cho
{"title":"An efficient algorithm for updating regular expression indexes in RDF databases.","authors":"Jinsoo Lee,&nbsp;Romans Kasperovics,&nbsp;Wook-Shin Han,&nbsp;Jeong-Hoon Lee,&nbsp;Min Soo Kim,&nbsp;Hune Cho","doi":"10.1504/ijdmb.2015.066767","DOIUrl":null,"url":null,"abstract":"<p><p>The Resource Description Framework (RDF) is widely used for sharing biomedical data, such as gene ontology or the online protein database UniProt. SPARQL is a native query language for RDF, featuring regular expressions in queries for which exact values are either irrelevant or unknown. The use of regular expression indexes in SPARQL query processing improves the performance of queries containing regular expressions by up to two orders of magnitude. In this study, we address the update operation for regular expression indexes in RDF databases. We identify major performance problems of straightforward index update algorithms and propose a new algorithm that utilises unique properties of regular expression indexes to increase performance. Our contributions can be summarised as follows: (1) we propose an efficient update algorithm for regular expression indexes in RDF databases, (2) we build a prototype system for the proposed algorithm in C++ and (3) we conduct extensive experiments demonstrating the improvement of our algorithm over the straightforward approaches by an order of magnitude.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"11 2","pages":"205-22"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.066767","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.066767","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

The Resource Description Framework (RDF) is widely used for sharing biomedical data, such as gene ontology or the online protein database UniProt. SPARQL is a native query language for RDF, featuring regular expressions in queries for which exact values are either irrelevant or unknown. The use of regular expression indexes in SPARQL query processing improves the performance of queries containing regular expressions by up to two orders of magnitude. In this study, we address the update operation for regular expression indexes in RDF databases. We identify major performance problems of straightforward index update algorithms and propose a new algorithm that utilises unique properties of regular expression indexes to increase performance. Our contributions can be summarised as follows: (1) we propose an efficient update algorithm for regular expression indexes in RDF databases, (2) we build a prototype system for the proposed algorithm in C++ and (3) we conduct extensive experiments demonstrating the improvement of our algorithm over the straightforward approaches by an order of magnitude.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在RDF数据库中更新正则表达式索引的有效算法。
资源描述框架(RDF)被广泛用于生物医学数据的共享,如基因本体或在线蛋白质数据库UniProt。SPARQL是RDF的一种本地查询语言,在查询中提供正则表达式,而这些正则表达式的准确值要么是不相关的,要么是未知的。在SPARQL查询处理中使用正则表达式索引可以将包含正则表达式的查询的性能提高两个数量级。在本研究中,我们解决了RDF数据库中正则表达式索引的更新操作。我们确定了直接索引更新算法的主要性能问题,并提出了一种利用正则表达式索引的独特属性来提高性能的新算法。我们的贡献可以总结如下:(1)我们为RDF数据库中的正则表达式索引提出了一种有效的更新算法,(2)我们用c++为所提出的算法构建了一个原型系统,(3)我们进行了大量的实验,证明我们的算法比直接的方法有了数量级的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1