Probabilistic partial least squares regression for quantitative analysis of Raman spectra.

Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.066768
Shuo Li, James O Nyagilo, Digant P Dave, Wei Wang, Baoju Zhang, Jean Gao
{"title":"Probabilistic partial least squares regression for quantitative analysis of Raman spectra.","authors":"Shuo Li,&nbsp;James O Nyagilo,&nbsp;Digant P Dave,&nbsp;Wei Wang,&nbsp;Baoju Zhang,&nbsp;Jean Gao","doi":"10.1504/ijdmb.2015.066768","DOIUrl":null,"url":null,"abstract":"<p><p>With the latest development of Surface-Enhanced Raman Scattering (SERS) technique, quantitative analysis of Raman spectra has shown the potential and promising trend of development in vivo molecular imaging. Partial Least Squares Regression (PLSR) is state-of-the-art method. But it only relies on training samples, which makes it difficult to incorporate complex domain knowledge. Based on probabilistic Principal Component Analysis (PCA) and probabilistic curve fitting idea, we propose a probabilistic PLSR (PPLSR) model and an Estimation Maximisation (EM) algorithm for estimating parameters. This model explains PLSR from a probabilistic viewpoint, describes its essential meaning and provides a foundation to develop future Bayesian nonparametrics models. Two real Raman spectra datasets were used to evaluate this model, and experimental results show its effectiveness.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.066768","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.066768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the latest development of Surface-Enhanced Raman Scattering (SERS) technique, quantitative analysis of Raman spectra has shown the potential and promising trend of development in vivo molecular imaging. Partial Least Squares Regression (PLSR) is state-of-the-art method. But it only relies on training samples, which makes it difficult to incorporate complex domain knowledge. Based on probabilistic Principal Component Analysis (PCA) and probabilistic curve fitting idea, we propose a probabilistic PLSR (PPLSR) model and an Estimation Maximisation (EM) algorithm for estimating parameters. This model explains PLSR from a probabilistic viewpoint, describes its essential meaning and provides a foundation to develop future Bayesian nonparametrics models. Two real Raman spectra datasets were used to evaluate this model, and experimental results show its effectiveness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
拉曼光谱定量分析的概率偏最小二乘回归。
随着表面增强拉曼散射(SERS)技术的最新发展,拉曼光谱的定量分析显示出体内分子成像的潜力和发展趋势。偏最小二乘回归(PLSR)是目前最先进的回归方法。但它只依赖于训练样本,难以整合复杂的领域知识。基于概率主成分分析(PCA)和概率曲线拟合思想,提出了一种概率PLSR (PPLSR)模型和一种估计最大化(EM)算法。该模型从概率的角度对PLSR进行了解释,描述了其本质意义,为今后贝叶斯非参数模型的发展奠定了基础。用两个真实的拉曼光谱数据集对该模型进行了验证,实验结果表明了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1