{"title":"A Neurologist's Guide to TNF Biology and to the Principles behind the Therapeutic Removal of Excess TNF in Disease.","authors":"Ian A Clark, Bryce Vissel","doi":"10.1155/2015/358263","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor necrosis factor (TNF) is an ancient and widespread cytokine required in small amounts for much physiological function. Higher concentrations are central to innate immunity, but if unchecked this cytokine orchestrates much chronic and acute disease, both infectious and noninfectious. While being a major proinflammatory cytokine, it also controls homeostasis and plasticity in physiological circumstances. For the last decade or so these principles have been shown to apply to the central nervous system as well as the rest of the body. Nevertheless, whereas this approach has been a major success in treating noncerebral disease, its investigation and potential widespread adoption in chronic neurological conditions has inexplicably stalled since the first open trial almost a decade ago. While neuroscience is closely involved with this approach, clinical neurology appears to be reticent in engaging with what it offers patients. Unfortunately, the basic biology of TNF and its relevance to disease is largely outside the traditions of neurology. The purpose of this review is to facilitate lowering communication barriers between the traditional anatomically based medical specialties through recognition of shared disease mechanisms and thus advance the prospects of a large group of patients with neurodegenerative conditions for whom at present little can be done. </p>","PeriodicalId":51299,"journal":{"name":"Neural Plasticity","volume":"2015 ","pages":"358263"},"PeriodicalIF":3.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/358263","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Plasticity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2015/358263","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 23
Abstract
Tumor necrosis factor (TNF) is an ancient and widespread cytokine required in small amounts for much physiological function. Higher concentrations are central to innate immunity, but if unchecked this cytokine orchestrates much chronic and acute disease, both infectious and noninfectious. While being a major proinflammatory cytokine, it also controls homeostasis and plasticity in physiological circumstances. For the last decade or so these principles have been shown to apply to the central nervous system as well as the rest of the body. Nevertheless, whereas this approach has been a major success in treating noncerebral disease, its investigation and potential widespread adoption in chronic neurological conditions has inexplicably stalled since the first open trial almost a decade ago. While neuroscience is closely involved with this approach, clinical neurology appears to be reticent in engaging with what it offers patients. Unfortunately, the basic biology of TNF and its relevance to disease is largely outside the traditions of neurology. The purpose of this review is to facilitate lowering communication barriers between the traditional anatomically based medical specialties through recognition of shared disease mechanisms and thus advance the prospects of a large group of patients with neurodegenerative conditions for whom at present little can be done.
期刊介绍:
Neural Plasticity is an international, interdisciplinary journal dedicated to the publication of articles related to all aspects of neural plasticity, with special emphasis on its functional significance as reflected in behavior and in psychopathology. Neural Plasticity publishes research and review articles from the entire range of relevant disciplines, including basic neuroscience, behavioral neuroscience, cognitive neuroscience, biological psychology, and biological psychiatry.