Sonic hedgehog multimerization: a self-organizing event driven by post-translational modifications?

Q3 Biochemistry, Genetics and Molecular Biology Molecular Membrane Biology Pub Date : 2015-01-01 Epub Date: 2015-08-27 DOI:10.3109/09687688.2015.1066895
Mirella V Koleva, Stephen Rothery, Martin Spitaler, Mark A A Neil, Anthony I Magee
{"title":"Sonic hedgehog multimerization: a self-organizing event driven by post-translational modifications?","authors":"Mirella V Koleva, Stephen Rothery, Martin Spitaler, Mark A A Neil, Anthony I Magee","doi":"10.3109/09687688.2015.1066895","DOIUrl":null,"url":null,"abstract":"<p><p>Sonic hedgehog (Shh) is a morphogen active during vertebrate development and tissue homeostasis in adulthood. Dysregulation of the Shh signalling pathway is known to incite carcinogenesis. Due to the highly lipophilic nature of this protein imparted by two post-translational modifications, Shh's method of transit through the aqueous extracellular milieu has been a long-standing conundrum, prompting the proposition of numerous hypotheses to explain the manner of its displacement from the surface of the producing cell. Detection of high molecular-weight complexes of Shh in the intercellular environment has indicated that the protein achieves this by accumulating into multimeric structures prior to release from producing cells. The mechanism of assembly of the multimers, however, has hitherto remained mysterious and contentious. Here, with the aid of high-resolution optical imaging and post-translational modification mutants of Shh, we show that the C-terminal cholesterol and the N-terminal palmitate adducts contribute to the assembly of large multimers and regulate their shape. Moreover, we show that small Shh multimers are produced in the absence of any lipid modifications. Based on an assessment of the distribution of various dimensional characteristics of individual Shh clusters, in parallel with deductions about the kinetics of release of the protein from the producing cells, we conclude that multimerization is driven by self-assembly underpinned by the law of mass action. We speculate that the lipid modifications augment the size of the multimolecular complexes through prolonging their association with the exoplasmic membrane.</p>","PeriodicalId":18858,"journal":{"name":"Molecular Membrane Biology","volume":"32 3","pages":"65-74"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Membrane Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/09687688.2015.1066895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/8/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Sonic hedgehog (Shh) is a morphogen active during vertebrate development and tissue homeostasis in adulthood. Dysregulation of the Shh signalling pathway is known to incite carcinogenesis. Due to the highly lipophilic nature of this protein imparted by two post-translational modifications, Shh's method of transit through the aqueous extracellular milieu has been a long-standing conundrum, prompting the proposition of numerous hypotheses to explain the manner of its displacement from the surface of the producing cell. Detection of high molecular-weight complexes of Shh in the intercellular environment has indicated that the protein achieves this by accumulating into multimeric structures prior to release from producing cells. The mechanism of assembly of the multimers, however, has hitherto remained mysterious and contentious. Here, with the aid of high-resolution optical imaging and post-translational modification mutants of Shh, we show that the C-terminal cholesterol and the N-terminal palmitate adducts contribute to the assembly of large multimers and regulate their shape. Moreover, we show that small Shh multimers are produced in the absence of any lipid modifications. Based on an assessment of the distribution of various dimensional characteristics of individual Shh clusters, in parallel with deductions about the kinetics of release of the protein from the producing cells, we conclude that multimerization is driven by self-assembly underpinned by the law of mass action. We speculate that the lipid modifications augment the size of the multimolecular complexes through prolonging their association with the exoplasmic membrane.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
音速刺猬多聚化:翻译后修饰驱动的自组织事件?
音速刺猬(Shh)是脊椎动物发育和成年组织稳态过程中活跃的形态发生因子。众所周知,Shh 信号通路失调会诱发癌变。由于这种蛋白质经过两种翻译后修饰后具有高度亲脂性,Shh 在细胞外水环境中的转运方式一直是一个长期存在的难题,促使人们提出了许多假说来解释其从产生细胞表面转移的方式。在细胞间环境中检测到的 Shh 高分子量复合物表明,该蛋白质在从产生细胞释放出来之前是通过积聚成多聚体结构来实现这一目的的。然而,迄今为止,多聚体的组装机制仍然是神秘而有争议的。在此,我们借助高分辨率光学成像和 Shh 翻译后修饰突变体,证明 C 端胆固醇和 N 端棕榈酸酯加合物有助于大型多聚体的组装并调节其形状。此外,我们还发现,在没有任何脂质修饰的情况下,也会产生小的 Shh 多聚体。根据对单个 Shh 簇的各种尺寸特征分布的评估,以及对蛋白质从产生细胞中释放的动力学的推断,我们得出结论:多聚体化是由质量作用定律支持下的自组装驱动的。我们推测,脂质修饰可延长多分子复合物与外质膜的结合,从而增大其体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Membrane Biology
Molecular Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation. Molecular Membrane Biology provides a forum for high quality research that serves to advance knowledge in molecular aspects of biological membrane structure and function. The journal welcomes submissions of original research papers and reviews in the following areas: • Membrane receptors and signalling • Membrane transporters, pores and channels • Synthesis and structure of membrane proteins • Membrane translocation and targeting • Lipid organisation and asymmetry • Model membranes • Membrane trafficking • Cytoskeletal and extracellular membrane interactions • Cell adhesion and intercellular interactions • Molecular dynamics and molecular modelling of membranes. • Antimicrobial peptides.
期刊最新文献
Comparison between MassARRAY and pyrosequencing for CYP2C19 and ABCB1 gene variants of clopidogrel efficiency genotyping. BKCa channel is a molecular target of vitamin C to protect against ischemic brain stroke. The KdpFABC complex - K+ transport against all odds. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Potassium channels and their role in glioma: A mini review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1