Addressing complexity in catalyst design: From volcanos and scaling to more sophisticated design strategies

IF 8.2 1区 化学 Q1 CHEMISTRY, PHYSICAL Surface Science Reports Pub Date : 2023-08-01 DOI:10.1016/j.surfrep.2023.100597
Sarah M. Stratton, Shengjie Zhang, Matthew M. Montemore
{"title":"Addressing complexity in catalyst design: From volcanos and scaling to more sophisticated design strategies","authors":"Sarah M. Stratton,&nbsp;Shengjie Zhang,&nbsp;Matthew M. Montemore","doi":"10.1016/j.surfrep.2023.100597","DOIUrl":null,"url":null,"abstract":"<div><p>Volcano plots and scaling relations are commonly used to design catalysts and understand catalytic behavior. These plots are a useful tool due to their robust and simple analysis of catalysis; however, catalysts that follow the volcano plot paradigm have an inherent limit to their performance. Scaling and Brønsted-Evans-Polanyi (BEP) relations, which are linear correlations in reaction energetics, force tradeoffs when optimizing catalysts, which leads to this limit on performance. Therefore, materials and design strategies that are not limited by volcano plots and scaling relations are of high interest, and this is the focus of this Report. We first give an overview of volcano plots and scaling relations. Deviations from scaling relations and the volcano plot and their causes are discussed in more detail. Finally, design strategies that do not rely on the volcano plot paradigm are reviewed.</p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"78 3","pages":"Article 100597"},"PeriodicalIF":8.2000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572923000122","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Volcano plots and scaling relations are commonly used to design catalysts and understand catalytic behavior. These plots are a useful tool due to their robust and simple analysis of catalysis; however, catalysts that follow the volcano plot paradigm have an inherent limit to their performance. Scaling and Brønsted-Evans-Polanyi (BEP) relations, which are linear correlations in reaction energetics, force tradeoffs when optimizing catalysts, which leads to this limit on performance. Therefore, materials and design strategies that are not limited by volcano plots and scaling relations are of high interest, and this is the focus of this Report. We first give an overview of volcano plots and scaling relations. Deviations from scaling relations and the volcano plot and their causes are discussed in more detail. Finally, design strategies that do not rely on the volcano plot paradigm are reviewed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解决催化剂设计中的复杂性:从火山和缩放到更复杂的设计策略
火山图和缩放关系通常用于设计催化剂和了解催化行为。这些图是一种有用的工具,因为它们对催化的分析可靠而简单;然而,遵循火山图范式的催化剂对其性能有固有的限制。缩放和Brønsted-Evans-Polanyi (BEP)关系是反应能量学中的线性关系,在优化催化剂时强制权衡,这导致了性能的限制。因此,不受火山地块和尺度关系限制的材料和设计策略备受关注,这也是本报告的重点。我们首先概述了火山图和缩放关系。更详细地讨论了尺度关系和火山图的偏差及其原因。最后,回顾了不依赖于火山地块范式的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Surface Science Reports
Surface Science Reports 化学-物理:凝聚态物理
CiteScore
15.90
自引率
2.00%
发文量
9
审稿时长
178 days
期刊介绍: Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.
期刊最新文献
Editorial Board Hexagonal boron nitride on metal surfaces as a support and template X-ray photoelectron spectroscopy of epitaxial films and heterostructures Editorial Board Atomic wires on substrates: Physics between one and two dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1