Copper-free click chemistry for attachment of biomolecules in magnetic tweezers.

Q1 Biochemistry, Genetics and Molecular Biology BMC Biophysics Pub Date : 2015-09-25 eCollection Date: 2015-01-01 DOI:10.1186/s13628-015-0023-9
Jorine M Eeftens, Jaco van der Torre, Daniel R Burnham, Cees Dekker
{"title":"Copper-free click chemistry for attachment of biomolecules in magnetic tweezers.","authors":"Jorine M Eeftens,&nbsp;Jaco van der Torre,&nbsp;Daniel R Burnham,&nbsp;Cees Dekker","doi":"10.1186/s13628-015-0023-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Single-molecule techniques have proven to be an excellent approach for quantitatively studying DNA-protein interactions at the single-molecule level. In magnetic tweezers, a force is applied to a biopolymer that is anchored between a glass surface and a magnetic bead. Whereas the relevant force regime for many biological processes is above 20pN, problems arise at these higher forces, since the molecule of interest can detach from the attachment points at the surface or the bead. Whereas many recipes for attachment of biopolymers have been developed, most methods do not suffice, as the molecules break at high force, or the attachment chemistry leads to nonspecific cross reactions with proteins.</p><p><strong>Results: </strong>Here, we demonstrate a novel attachment method using copper-free click chemistry, where a DBCO-tagged DNA molecule is bound to an azide-functionalized surface. We use this new technique to covalently attach DNA to a flow cell surface. We show that this technique results in covalently linked tethers that are torsionally constrained and withstand very high forces (>100pN) in magnetic tweezers.</p><p><strong>Conclusions: </strong>This novel anchoring strategy using copper-free click chemistry allows to specifically and covalently link biomolecules, and conduct high-force single-molecule experiments. Excitingly, this advance opens up the possibility for single-molecule experiments on DNA-protein complexes and molecules that are taken directly from cell lysate.</p>","PeriodicalId":9045,"journal":{"name":"BMC Biophysics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13628-015-0023-9","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13628-015-0023-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 26

Abstract

Background: Single-molecule techniques have proven to be an excellent approach for quantitatively studying DNA-protein interactions at the single-molecule level. In magnetic tweezers, a force is applied to a biopolymer that is anchored between a glass surface and a magnetic bead. Whereas the relevant force regime for many biological processes is above 20pN, problems arise at these higher forces, since the molecule of interest can detach from the attachment points at the surface or the bead. Whereas many recipes for attachment of biopolymers have been developed, most methods do not suffice, as the molecules break at high force, or the attachment chemistry leads to nonspecific cross reactions with proteins.

Results: Here, we demonstrate a novel attachment method using copper-free click chemistry, where a DBCO-tagged DNA molecule is bound to an azide-functionalized surface. We use this new technique to covalently attach DNA to a flow cell surface. We show that this technique results in covalently linked tethers that are torsionally constrained and withstand very high forces (>100pN) in magnetic tweezers.

Conclusions: This novel anchoring strategy using copper-free click chemistry allows to specifically and covalently link biomolecules, and conduct high-force single-molecule experiments. Excitingly, this advance opens up the possibility for single-molecule experiments on DNA-protein complexes and molecules that are taken directly from cell lysate.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性镊子中附着生物分子的无铜点击化学。
背景:单分子技术已被证明是在单分子水平上定量研究dna -蛋白质相互作用的一种极好的方法。在磁镊子中,一个力被施加到固定在玻璃表面和磁珠之间的生物聚合物上。虽然许多生物过程的相关力大于20pN,但在这些更高的力下会出现问题,因为感兴趣的分子可以从表面或头部的附着点上分离。虽然已经开发了许多生物聚合物的附着配方,但大多数方法都不够,因为分子在高强度下会断裂,或者附着化学会导致与蛋白质的非特异性交叉反应。结果:在这里,我们展示了一种使用无铜点击化学的新型连接方法,其中dbco标记的DNA分子结合到叠氮化表面。我们使用这种新技术将DNA共价附着在流动细胞表面。我们表明,这种技术产生了共价连接的系绳,这些系绳在磁镊子中受到扭转约束并承受非常高的力(>100pN)。结论:这种新型的锚定策略使用无铜点击化学可以特异性和共价连接生物分子,并进行高强度的单分子实验。令人兴奋的是,这一进展为直接从细胞裂解液中提取dna -蛋白质复合物和分子的单分子实验开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Biophysics
BMC Biophysics BIOPHYSICS-
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation
期刊最新文献
Correction to: Long range Debye-Hückel correction for computation of grid-based electrostatic forces between biomacromolecules. Covalent linkage of bacterial voltage-gated sodium channels. Role of protein interactions in stabilizing canonical DNA features in simulations of DNA in crowded environments. A discontinuous Galerkin model for fluorescence loss in photobleaching of intracellular polyglutamine protein aggregates. Phenylalanine intercalation parameters for liquid-disordered phase domains - a membrane model study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1