Biosynthesis and Insertion of the Molybdenum Cofactor.

Q1 Medicine EcoSal Plus Pub Date : 2015-01-01 DOI:10.1128/ecosalplus.ESP-0006-2013
Axel Magalon, Ralf R Mendel
{"title":"Biosynthesis and Insertion of the Molybdenum Cofactor.","authors":"Axel Magalon,&nbsp;Ralf R Mendel","doi":"10.1128/ecosalplus.ESP-0006-2013","DOIUrl":null,"url":null,"abstract":"<p><p>The transition element molybdenum (Mo) is of primordial importance for biological systems, because it is required by enzymes catalyzing key reactions in the global carbon, sulfur, and nitrogen metabolism. To gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo-enzymes in prokaryotes including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox reactions. Mo-enzymes are widespread in prokaryotes and many of them were likely present in the Last Universal Common Ancestor. To date, more than 50--mostly bacterial--Mo-enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Mo-cofactor is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1128/ecosalplus.ESP-0006-2013","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.ESP-0006-2013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 17

Abstract

The transition element molybdenum (Mo) is of primordial importance for biological systems, because it is required by enzymes catalyzing key reactions in the global carbon, sulfur, and nitrogen metabolism. To gain biological activity, Mo has to be complexed by a special cofactor. With the exception of bacterial nitrogenase, all Mo-dependent enzymes contain a unique pyranopterin-based cofactor coordinating a Mo atom at their catalytic site. Various types of reactions are catalyzed by Mo-enzymes in prokaryotes including oxygen atom transfer, sulfur or proton transfer, hydroxylation, or even nonredox reactions. Mo-enzymes are widespread in prokaryotes and many of them were likely present in the Last Universal Common Ancestor. To date, more than 50--mostly bacterial--Mo-enzymes are described in nature. In a few eubacteria and in many archaea, Mo is replaced by tungsten bound to the same unique pyranopterin. How Mo-cofactor is synthesized in bacteria is reviewed as well as the way until its insertion into apo-Mo-enzymes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钼辅助因子的生物合成与插入。
过渡元素钼(Mo)对生物系统至关重要,因为它是酶催化全球碳、硫和氮代谢关键反应所必需的。为了获得生物活性,Mo必须通过一种特殊的辅因子络合。除了细菌的氮酶外,所有的钼依赖酶都含有一个独特的基于pyranopterin的辅因子,在它们的催化位点上配以一个钼原子。在原核生物中,各种类型的反应都是由mo酶催化的,包括氧原子转移、硫或质子转移、羟基化,甚至是非氧化还原反应。钼酶在原核生物中广泛存在,其中许多可能存在于最后的普遍共同祖先中。迄今为止,在自然界中已经发现了50多种钼酶,其中大部分是细菌。在一些真细菌和许多古细菌中,Mo被钨取代,钨与同样独特的pyranopterin结合。综述了mo -辅因子在细菌中的合成过程,以及其插入载脂蛋白mo -酶的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
EcoSal Plus
EcoSal Plus Immunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍: EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.
期刊最新文献
Genetic engineering of Salmonella spp. for novel vaccine strategies and therapeutics. Spatio-temporal organization of the E. coli chromosome from base to cellular length scales. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. Transcription activation in Escherichia coli and Salmonella. Type IV pili of Enterobacteriaceae species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1