Hyaluronan Synthase: The Mechanism of Initiation at the Reducing End and a Pendulum Model for Polysaccharide Translocation to the Cell Exterior.

Q3 Biochemistry, Genetics and Molecular Biology International Journal of Cell Biology Pub Date : 2015-01-01 Epub Date: 2015-09-10 DOI:10.1155/2015/367579
Paul H Weigel
{"title":"Hyaluronan Synthase: The Mechanism of Initiation at the Reducing End and a Pendulum Model for Polysaccharide Translocation to the Cell Exterior.","authors":"Paul H Weigel","doi":"10.1155/2015/367579","DOIUrl":null,"url":null,"abstract":"<p><p>Hyaluronan (HA) biosynthesis has been studied for over six decades, but our understanding of the biochemical details of how HA synthase (HAS) assembles HA is still incomplete. Class I family members include mammalian and streptococcal HASs, the focus of this review, which add new intracellular sugar-UDPs at the reducing end of growing hyaluronyl-UDP chains. HA-producing cells typically create extracellular HA coats (capsules) and also secrete HA into the surrounding space. Since HAS contains multiple transmembrane domains and is lipid-dependent, we proposed in 1999 that it creates an intraprotein HAS-lipid pore through which a growing HA-UDP chain is translocated continuously across the cell membrane to the exterior. We review here the evidence for a synthase pore-mediated polysaccharide translocation process and describe a possible mechanism (the Pendulum Model) and potential energy sources to drive this ATP-independent process. HA synthases also synthesize chitin oligosaccharides, which are created by cleavage of novel oligo-chitosyl-UDP products. The synthesis of chitin-UDP oligomers by HAS confirms the reducing end mechanism for sugar addition during HA assembly by streptococcal and mammalian Class I enzymes. These new findings indicate the possibility that HA biosynthesis is initiated by the ability of HAS to use chitin-UDP oligomers as self-primers. </p>","PeriodicalId":39084,"journal":{"name":"International Journal of Cell Biology","volume":"2015 ","pages":"367579"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2015/367579","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cell Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/367579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/9/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 97

Abstract

Hyaluronan (HA) biosynthesis has been studied for over six decades, but our understanding of the biochemical details of how HA synthase (HAS) assembles HA is still incomplete. Class I family members include mammalian and streptococcal HASs, the focus of this review, which add new intracellular sugar-UDPs at the reducing end of growing hyaluronyl-UDP chains. HA-producing cells typically create extracellular HA coats (capsules) and also secrete HA into the surrounding space. Since HAS contains multiple transmembrane domains and is lipid-dependent, we proposed in 1999 that it creates an intraprotein HAS-lipid pore through which a growing HA-UDP chain is translocated continuously across the cell membrane to the exterior. We review here the evidence for a synthase pore-mediated polysaccharide translocation process and describe a possible mechanism (the Pendulum Model) and potential energy sources to drive this ATP-independent process. HA synthases also synthesize chitin oligosaccharides, which are created by cleavage of novel oligo-chitosyl-UDP products. The synthesis of chitin-UDP oligomers by HAS confirms the reducing end mechanism for sugar addition during HA assembly by streptococcal and mammalian Class I enzymes. These new findings indicate the possibility that HA biosynthesis is initiated by the ability of HAS to use chitin-UDP oligomers as self-primers.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透明质酸合酶:还原端起始机制和多糖向细胞外转运的钟摆模型。
透明质酸(HA)的生物合成已经研究了60多年,但我们对HA合成酶(has)如何组装HA的生化细节的理解仍然不完整。第一类家族成员包括哺乳动物和链球菌HASs,这是本综述的重点,它们在生长的透明质酰- udp链的还原端添加新的细胞内糖- udp。产生透明质酸的细胞通常产生细胞外透明质酸外壳(胶囊),并将透明质酸分泌到周围空间。由于HAS包含多个跨膜结构域并且是脂质依赖的,我们在1999年提出,它在蛋白内创造了一个HAS-脂质孔,通过该孔,生长的HA-UDP链连续地跨细胞膜转移到外部。我们回顾了合成酶孔介导的多糖转运过程的证据,并描述了一个可能的机制(钟摆模型)和潜在的能量来源来驱动这个不依赖于atp的过程。透明质酸合成酶还可以合成几丁质低聚糖,这是通过切割新的低聚壳聚糖- udp产物产生的。HAS合成几丁质udp低聚物证实了链球菌和哺乳动物I类酶在HA组装过程中糖添加的还原端机制。这些新发现表明,HA的生物合成可能是由HAS利用几丁质- udp低聚物作为自引物的能力引发的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Cell Biology
International Journal of Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
3.30
自引率
0.00%
发文量
4
审稿时长
20 weeks
期刊最新文献
A Comparative Study on the Effects of Mesenchymal Stem Cells and Their Conditioned Medium on Caco-2 Cells as an In Vitro Model for Inflammatory Bowel Disease. The Effect of Exposure to Mobile Phones on Electrical Cardiac Measurements: A Multivariate Analysis and a Variable Selection Algorithm to Detect the Relationship With Mean Changes. The Role of Bcl-2 Family Proteins and Sorafenib Resistance in Hepatocellular Carcinoma. Mitotic Kinases Aurora-A, Plk1, and Cdk1 Interact with Elk-1 Transcription Factor through the N-Terminal Domain. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1