{"title":"Co-decision matrix framework for name entity recognition in biomedical text.","authors":"Haochang Wang, Yu Li","doi":"10.1504/ijdmb.2015.067956","DOIUrl":null,"url":null,"abstract":"<p><p>As a new branch of data mining and knowledge discovery, the research of biomedical text mining has a rapid progress currently. Biomedical named entity (BNE) recognition is a basic technique in the biomedical knowledge discovery and its performance has direct effects on further discovery and processing in biomedical texts. In this paper, we present an improved method based on co-decision matrix framework for Biomedical Named Entity Recognition (BNER). The relativity between classifiers is utilised by using co-decision matrix to exchange decision information among classifiers. The experiments are carried on GENIA corpus with the best result of 75.9% F-score. Experimental results show that the proposed method, co-decision matrix framework, can yield promising performances.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"11 4","pages":"412-23"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067956","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.067956","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
As a new branch of data mining and knowledge discovery, the research of biomedical text mining has a rapid progress currently. Biomedical named entity (BNE) recognition is a basic technique in the biomedical knowledge discovery and its performance has direct effects on further discovery and processing in biomedical texts. In this paper, we present an improved method based on co-decision matrix framework for Biomedical Named Entity Recognition (BNER). The relativity between classifiers is utilised by using co-decision matrix to exchange decision information among classifiers. The experiments are carried on GENIA corpus with the best result of 75.9% F-score. Experimental results show that the proposed method, co-decision matrix framework, can yield promising performances.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.