Co-decision matrix framework for name entity recognition in biomedical text.

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.067956
Haochang Wang, Yu Li
{"title":"Co-decision matrix framework for name entity recognition in biomedical text.","authors":"Haochang Wang,&nbsp;Yu Li","doi":"10.1504/ijdmb.2015.067956","DOIUrl":null,"url":null,"abstract":"<p><p>As a new branch of data mining and knowledge discovery, the research of biomedical text mining has a rapid progress currently. Biomedical named entity (BNE) recognition is a basic technique in the biomedical knowledge discovery and its performance has direct effects on further discovery and processing in biomedical texts. In this paper, we present an improved method based on co-decision matrix framework for Biomedical Named Entity Recognition (BNER). The relativity between classifiers is utilised by using co-decision matrix to exchange decision information among classifiers. The experiments are carried on GENIA corpus with the best result of 75.9% F-score. Experimental results show that the proposed method, co-decision matrix framework, can yield promising performances.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"11 4","pages":"412-23"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.067956","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.067956","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

As a new branch of data mining and knowledge discovery, the research of biomedical text mining has a rapid progress currently. Biomedical named entity (BNE) recognition is a basic technique in the biomedical knowledge discovery and its performance has direct effects on further discovery and processing in biomedical texts. In this paper, we present an improved method based on co-decision matrix framework for Biomedical Named Entity Recognition (BNER). The relativity between classifiers is utilised by using co-decision matrix to exchange decision information among classifiers. The experiments are carried on GENIA corpus with the best result of 75.9% F-score. Experimental results show that the proposed method, co-decision matrix framework, can yield promising performances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物医学文本名称实体识别的协同决策矩阵框架。
生物医学文本挖掘作为数据挖掘和知识发现的一个新分支,目前研究进展迅速。生物医学命名实体(BNE)识别是生物医学知识发现的一项基本技术,其性能直接影响到生物医学文本的进一步发现和处理。本文提出了一种改进的基于协同决策矩阵框架的生物医学命名实体识别方法。利用分类器之间的相关性,利用共同决策矩阵在分类器之间交换决策信息。实验在GENIA语料上进行,f值达到75.9%。实验结果表明,所提出的联合决策矩阵框架方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1