Comparison of epsilon- and delta-class glutathione S-transferases: the crystal structures of the glutathione S-transferases DmGSTE6 and DmGSTE7 from Drosophila melanogaster.

Michele Scian, Isolde Le Trong, Aslam M A Mazari, Bengt Mannervik, William M Atkins, Ronald E Stenkamp
{"title":"Comparison of epsilon- and delta-class glutathione S-transferases: the crystal structures of the glutathione S-transferases DmGSTE6 and DmGSTE7 from Drosophila melanogaster.","authors":"Michele Scian, Isolde Le Trong, Aslam M A Mazari, Bengt Mannervik, William M Atkins, Ronald E Stenkamp","doi":"10.1107/S1399004715013929","DOIUrl":null,"url":null,"abstract":"Cytosolic glutathione transferases (GSTs) comprise a large family of enzymes with canonical structures that diverge functionally and structurally among mammals, invertebrates and plants. Whereas mammalian GSTs have been characterized extensively with regard to their structure and function, invertebrate GSTs remain relatively unstudied. The invertebrate GSTs do, however, represent potentially important drug targets for infectious diseases and agricultural applications. In addition, it is essential to fully understand the structure and function of invertebrate GSTs, which play important roles in basic biological processes. Invertebrates harbor delta- and epsilon-class GSTs, which are not found in other organisms. Drosophila melanogaster GSTs (DmGSTs) are likely to contribute to detoxication or antioxidative stress during development, but they have not been fully characterized. Here, the structures of two epsilon-class GSTs from Drosophila, DmGSTE6 and DmGSTE7, are reported at 2.1 and 1.5 Å resolution, respectively, and are compared with other GSTs to identify structural features that might correlate with their biological functions. The structures of DmGSTE6 and DmGSTE7 are remarkably similar; the structures do not reveal obvious sources of the minor functional differences that have been observed. The main structural difference between the epsilon- and delta-class GSTs is the longer helix (A8) at the C-termini of the epsilon-class enzymes.","PeriodicalId":7047,"journal":{"name":"Acta crystallographica. Section D, Biological crystallography","volume":"71 Pt 10","pages":"2089-98"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1107/S1399004715013929","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section D, Biological crystallography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1107/S1399004715013929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/9/26 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Cytosolic glutathione transferases (GSTs) comprise a large family of enzymes with canonical structures that diverge functionally and structurally among mammals, invertebrates and plants. Whereas mammalian GSTs have been characterized extensively with regard to their structure and function, invertebrate GSTs remain relatively unstudied. The invertebrate GSTs do, however, represent potentially important drug targets for infectious diseases and agricultural applications. In addition, it is essential to fully understand the structure and function of invertebrate GSTs, which play important roles in basic biological processes. Invertebrates harbor delta- and epsilon-class GSTs, which are not found in other organisms. Drosophila melanogaster GSTs (DmGSTs) are likely to contribute to detoxication or antioxidative stress during development, but they have not been fully characterized. Here, the structures of two epsilon-class GSTs from Drosophila, DmGSTE6 and DmGSTE7, are reported at 2.1 and 1.5 Å resolution, respectively, and are compared with other GSTs to identify structural features that might correlate with their biological functions. The structures of DmGSTE6 and DmGSTE7 are remarkably similar; the structures do not reveal obvious sources of the minor functional differences that have been observed. The main structural difference between the epsilon- and delta-class GSTs is the longer helix (A8) at the C-termini of the epsilon-class enzymes.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
epsilon-和delta-class谷胱甘肽s -转移酶的比较:果蝇谷胱甘肽s -转移酶DmGSTE6和DmGSTE7的晶体结构。
胞质谷胱甘肽转移酶(GSTs)包括一个具有典型结构的大家族酶,在哺乳动物、无脊椎动物和植物中具有不同的功能和结构。尽管哺乳动物的gst在结构和功能方面已经被广泛表征,但无脊椎动物的gst仍然相对缺乏研究。然而,无脊椎gst确实代表了传染病和农业应用的潜在重要药物靶点。此外,充分了解无脊椎动物gst的结构和功能是必要的,因为它在基本的生物过程中起着重要的作用。无脊椎动物具有三角洲和ε级gst,这在其他生物中是不存在的。黑腹果蝇GSTs (DmGSTs)可能在发育过程中参与解毒或抗氧化应激,但尚未完全表征。本文分别以2.1和1.5 Å的分辨率报道了来自果蝇的两个epsilon类gst DmGSTE6和DmGSTE7的结构,并与其他gst进行了比较,以确定可能与其生物学功能相关的结构特征。DmGSTE6和DmGSTE7的结构非常相似;这些结构并没有揭示已经观察到的细微功能差异的明显来源。epsilon-和delta-class gst在结构上的主要区别是epsilon-class酶的c端螺旋(A8)更长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Structure of RC1339/APRc from Rickettsia conorii, a retropepsin-like aspartic protease. The novel double-folded structure of d(GCATGCATGC): a possible model for triplet-repeat sequences. Structural basis for amino-acid recognition and transmembrane signalling by tandem Per-Arnt-Sim (tandem PAS) chemoreceptor sensory domains. Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1