{"title":"Folic acid in combination with adult neural stem cells for the treatment of spinal cord injury in rats.","authors":"Chen Zhang, Lin Shen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To observe the therapeutic effect of folic acid in combination with adult neural stem cells on spinal cord injury and to investigate the possible mechanism.</p><p><strong>Methods: </strong>A total of 120 Wistar rats were randomly assigned to six groups: normal, model, sham-surgery, folic acid injection, adult neural stem cell transplantation, and combination (folic acid injection + adult neural stem cells transplantation) groups. Morphology of neural stem cells was observed by inverted microscopy. Expression of CD105, CD45, CD44, and CD29 were detected by flow cytometry; expression of neuron-specific enolase and glial fibrillary acidic protein were determined by immunofluorescence. Motor coordination and integration capabilities were assessed using BBB scores; Morphology of spinal cord tissues was observed by hematoxylin-eosin staining and 5-bromodeoxyuridine immunohistochemistry. GDNF, BDNF and NT-3 expression in spinal cord tissues were determined by ELISA; while expression of the apoptosis-related proteins BCL-2, Bax and caspase-3 was detected using western blotting.</p><p><strong>Results: </strong>Flow cytometry showed that the isolated cells were positive for CD44 and CD29 and negative for CD105 and CD45. Combination treatment significantly improved the behavior of model rats with spinal cord injury, attenuated inflammatory reaction of spinal cord tissues, restored injured nerve cells, and increased expression of GDNF, BDNF and NT-3 in spinal cord tissues, up regulated BCL-2 expression, and down regulated Bax and caspase-3 expression.</p><p><strong>Conclusions: </strong>Folic acid in combination with adult neural stem cells significantly improved nerve function and plays a key role in maintaining microenvironment homeostasis in the neurons of rats with spinal cord injury.</p>","PeriodicalId":13892,"journal":{"name":"International journal of clinical and experimental medicine","volume":"8 7","pages":"10471-80"},"PeriodicalIF":0.2000,"publicationDate":"2015-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4565220/pdf/ijcem0008-10471.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of clinical and experimental medicine","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To observe the therapeutic effect of folic acid in combination with adult neural stem cells on spinal cord injury and to investigate the possible mechanism.
Methods: A total of 120 Wistar rats were randomly assigned to six groups: normal, model, sham-surgery, folic acid injection, adult neural stem cell transplantation, and combination (folic acid injection + adult neural stem cells transplantation) groups. Morphology of neural stem cells was observed by inverted microscopy. Expression of CD105, CD45, CD44, and CD29 were detected by flow cytometry; expression of neuron-specific enolase and glial fibrillary acidic protein were determined by immunofluorescence. Motor coordination and integration capabilities were assessed using BBB scores; Morphology of spinal cord tissues was observed by hematoxylin-eosin staining and 5-bromodeoxyuridine immunohistochemistry. GDNF, BDNF and NT-3 expression in spinal cord tissues were determined by ELISA; while expression of the apoptosis-related proteins BCL-2, Bax and caspase-3 was detected using western blotting.
Results: Flow cytometry showed that the isolated cells were positive for CD44 and CD29 and negative for CD105 and CD45. Combination treatment significantly improved the behavior of model rats with spinal cord injury, attenuated inflammatory reaction of spinal cord tissues, restored injured nerve cells, and increased expression of GDNF, BDNF and NT-3 in spinal cord tissues, up regulated BCL-2 expression, and down regulated Bax and caspase-3 expression.
Conclusions: Folic acid in combination with adult neural stem cells significantly improved nerve function and plays a key role in maintaining microenvironment homeostasis in the neurons of rats with spinal cord injury.