LMDS-based approach for efficient top-k local ligand-binding site search.

IF 0.2 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY International Journal of Data Mining and Bioinformatics Pub Date : 2015-01-01 DOI:10.1504/ijdmb.2015.070066
Sungchul Kim, Lee Sael, Hwanjo Yu
{"title":"LMDS-based approach for efficient top-k local ligand-binding site search.","authors":"Sungchul Kim,&nbsp;Lee Sael,&nbsp;Hwanjo Yu","doi":"10.1504/ijdmb.2015.070066","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we propose a LMDS-based binding-site search for improving the search speed of the Patch-Surfer method. Patch-Surfer is efficient in recognition of protein-ligand binding partners, further speedup is necessary to address multiple-user access. Futher speedup is realised by exploiting Landmark Multi-Dimensional Scaling (LMDS). It computes embedding coordinates for data points based on their distances from landmark points. When selecting the landmark points, we adopt two approaches--random and greedy selection. Our method approximately retrieves top-k results and the accuracy increases as we exploit more landmark points. Although two landmark selection approaches show comparable results, the greedy selection shows the best performance when the number of landmark points is large. Using our method, the searching time is reduced up to 99% and it retrieves almost 80% of exact top-k results. Additionally, LMDS-based binding-site search+ improves the retrieval accuracy from 80% to 95% while sacrificing the speedup ratio from 99% to 90% compared to Patch-Surfer.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"12 4","pages":"417-33"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.070066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.070066","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we propose a LMDS-based binding-site search for improving the search speed of the Patch-Surfer method. Patch-Surfer is efficient in recognition of protein-ligand binding partners, further speedup is necessary to address multiple-user access. Futher speedup is realised by exploiting Landmark Multi-Dimensional Scaling (LMDS). It computes embedding coordinates for data points based on their distances from landmark points. When selecting the landmark points, we adopt two approaches--random and greedy selection. Our method approximately retrieves top-k results and the accuracy increases as we exploit more landmark points. Although two landmark selection approaches show comparable results, the greedy selection shows the best performance when the number of landmark points is large. Using our method, the searching time is reduced up to 99% and it retrieves almost 80% of exact top-k results. Additionally, LMDS-based binding-site search+ improves the retrieval accuracy from 80% to 95% while sacrificing the speedup ratio from 99% to 90% compared to Patch-Surfer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于lmds的top-k局部配体结合位点高效搜索方法。
在这项工作中,我们提出了一种基于lmds的结合位点搜索,以提高Patch-Surfer方法的搜索速度。Patch-Surfer在识别蛋白质配体结合伙伴方面是有效的,进一步的加速是必要的,以解决多用户访问。通过利用Landmark Multi-Dimensional Scaling (LMDS)实现进一步的加速。它根据数据点到地标点的距离计算数据点的嵌入坐标。在选择地标点时,我们采用随机选择和贪婪选择两种方法。我们的方法近似地检索top-k结果,并且随着我们利用更多的地标点,精度增加。虽然两种地标选择方法的结果具有可比性,但当地标点数量较大时,贪婪选择方法表现出最好的性能。使用我们的方法,搜索时间减少了99%,并且检索了几乎80%的精确top-k结果。此外,与Patch-Surfer相比,基于lmds的结合位点搜索将检索准确率从80%提高到95%,同时牺牲了从99%到90%的加速比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.
期刊最新文献
Data mining based integration method of infant critical and critical information in modern hospital Fast retrieval method of biomedical literature based on feature mining Research on Cloud Storage Biological Data De duplication Method Based on Simhash Algorithm Identification of disease-related miRNAs based on Weighted K-Nearest Known Neighbors and Inductive Matrix Completion Diagnosis of Parkinson’s disease genes using LSTM and MLP based multi-feature extraction methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1