{"title":"Signal transduction in the activation of spermatozoa compared to other signalling pathways: a biological networks study.","authors":"Nicola Bernabò, Mauro Mattioli, Barbara Barboni","doi":"10.1504/ijdmb.2015.068953","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper we represented Spermatozoa Activation (SA) the process that leads male gametes to reach their fertilising ability of sea urchin, Caenorhabditis elegans and human as biological networks, i.e. as networks of nodes (molecules) linked by edges (their interactions). Then, we compared them with networks representing ten pathways of relevant physio-pathological importance and with a computer-generated network. We have found that the number of nodes and edges composing each network is not related with the amount of published papers on each specific topic and that all the topological parameters examined are similar in all the networks, thus conferring them a scale free topology and small world behaviour. In conclusion, SA topology, independently from the reproductive biology of considered organism, as others signalling networks is characterised by robustness against random failure, controllability and efficiency in signal transmission.</p>","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"12 1","pages":"59-69"},"PeriodicalIF":0.2000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijdmb.2015.068953","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/ijdmb.2015.068953","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 13
Abstract
In this paper we represented Spermatozoa Activation (SA) the process that leads male gametes to reach their fertilising ability of sea urchin, Caenorhabditis elegans and human as biological networks, i.e. as networks of nodes (molecules) linked by edges (their interactions). Then, we compared them with networks representing ten pathways of relevant physio-pathological importance and with a computer-generated network. We have found that the number of nodes and edges composing each network is not related with the amount of published papers on each specific topic and that all the topological parameters examined are similar in all the networks, thus conferring them a scale free topology and small world behaviour. In conclusion, SA topology, independently from the reproductive biology of considered organism, as others signalling networks is characterised by robustness against random failure, controllability and efficiency in signal transmission.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.