Inherent Structure-Guided Multi-view Learning for Alzheimer's Disease and Mild Cognitive Impairment Classification.

Mingxia Liu, Daoqiang Zhang, Dinggang Shen
{"title":"Inherent Structure-Guided Multi-view Learning for Alzheimer's Disease and Mild Cognitive Impairment Classification.","authors":"Mingxia Liu,&nbsp;Daoqiang Zhang,&nbsp;Dinggang Shen","doi":"10.1007/978-3-319-24888-2_36","DOIUrl":null,"url":null,"abstract":"<p><p>Multi-atlas based morphometric pattern analysis has been recently proposed for the automatic diagnosis of Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment (MCI), where multi-view feature representations for subjects are generated by using multiple atlases. However, existing multi-atlas based methods usually assume that each class is represented by a specific type of data distribution (i.e., a single cluster), while the underlying distribution of data is actually a prior unknown. In this paper, we propose an inherent structure-guided multi-view leaning (ISML) method for AD/MCI classification. Specifically, we first extract multi-view features for subjects using multiple selected atlases, and then cluster subjects in the original classes into several sub-classes (i.e., clusters) in each atlas space. Then, we encode each subject with a new label vector, by considering both the original class labels and the coding vectors for those sub-classes, followed by a multi-task feature selection model in each of multi-atlas spaces. Finally, we learn multiple SVM classifiers based on the selected features, and fuse them together by an ensemble classification method. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrate that our method achieves better performance than several state-of-the-art methods in AD/MCI classification.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"9352 ","pages":"296-303"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/978-3-319-24888-2_36","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-319-24888-2_36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2015/10/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multi-atlas based morphometric pattern analysis has been recently proposed for the automatic diagnosis of Alzheimer's disease (AD) and its early stage, i.e., mild cognitive impairment (MCI), where multi-view feature representations for subjects are generated by using multiple atlases. However, existing multi-atlas based methods usually assume that each class is represented by a specific type of data distribution (i.e., a single cluster), while the underlying distribution of data is actually a prior unknown. In this paper, we propose an inherent structure-guided multi-view leaning (ISML) method for AD/MCI classification. Specifically, we first extract multi-view features for subjects using multiple selected atlases, and then cluster subjects in the original classes into several sub-classes (i.e., clusters) in each atlas space. Then, we encode each subject with a new label vector, by considering both the original class labels and the coding vectors for those sub-classes, followed by a multi-task feature selection model in each of multi-atlas spaces. Finally, we learn multiple SVM classifiers based on the selected features, and fuse them together by an ensemble classification method. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrate that our method achieves better performance than several state-of-the-art methods in AD/MCI classification.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固有结构引导的多视角学习在阿尔茨海默病和轻度认知障碍分类中的应用。
基于多图谱的形态计量模式分析最近被提出用于阿尔茨海默病(AD)及其早期阶段,即轻度认知障碍(MCI)的自动诊断,其中使用多个图谱生成受试者的多视图特征表征。然而,现有的基于多图谱的方法通常假设每个类由特定类型的数据分布(即单个集群)表示,而数据的底层分布实际上是先验未知的。本文提出了一种基于固有结构引导的多视图学习(ISML)方法进行AD/MCI分类。具体而言,我们首先使用多个选定的地图集提取主题的多视图特征,然后在每个地图集空间中将原始类中的主题聚类为几个子类(即簇)。然后,通过考虑原始类标签和子类的编码向量,对每个主题进行新的标签向量编码,然后在每个多图集空间中建立多任务特征选择模型。最后,我们根据选择的特征学习多个SVM分类器,并通过集成分类方法将它们融合在一起。在阿尔茨海默病神经成像倡议(ADNI)数据库上的实验结果表明,我们的方法在AD/MCI分类方面取得了比几种最先进的方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic 3D Correspondence Prediction from Sparse Unsegmented Images. Class-Balanced Deep Learning with Adaptive Vector Scaling Loss for Dementia Stage Detection. MoViT: Memorizing Vision Transformers for Medical Image Analysis. Robust Unsupervised Super-Resolution of Infant MRI via Dual-Modal Deep Image Prior. IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease Prediction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1