Canonical Correlation to Estimate the Degree of Parkinsonism from Local Field Potential and Electroencephalographic Signals.

Teresa H Sanders, Annaelle Devergnas, Thomas Wichmann, Mark A Clements
{"title":"Canonical Correlation to Estimate the Degree of Parkinsonism from Local Field Potential and Electroencephalographic Signals.","authors":"Teresa H Sanders,&nbsp;Annaelle Devergnas,&nbsp;Thomas Wichmann,&nbsp;Mark A Clements","doi":"10.1109/NER.2013.6695896","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, modulation index (MI) features derived from local field potential (LFP) recordings in the subthalamic nucleus (STN) and electroencephalographic recordings (EEGs) from the primary motor cortex are shown to correlate with both the overall motor impairment and motor subscores in a monkey model of parkinsonism. The MI features used are measures of phase-amplitude cross frequency coupling (CFC) between frequency sub-bands. We used complex wavelet transforms to extract six spectral sub-bands within the 3-60 Hz range from LFP and EEG signals. Using the method of canonical correlation, we show that weighted combinations of the MI features in LFP or EEG signals correlate significantly with individual and composite scores on a scale for parkinsonian disability.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":" ","pages":"158-161"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/NER.2013.6695896","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2013.6695896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this study, modulation index (MI) features derived from local field potential (LFP) recordings in the subthalamic nucleus (STN) and electroencephalographic recordings (EEGs) from the primary motor cortex are shown to correlate with both the overall motor impairment and motor subscores in a monkey model of parkinsonism. The MI features used are measures of phase-amplitude cross frequency coupling (CFC) between frequency sub-bands. We used complex wavelet transforms to extract six spectral sub-bands within the 3-60 Hz range from LFP and EEG signals. Using the method of canonical correlation, we show that weighted combinations of the MI features in LFP or EEG signals correlate significantly with individual and composite scores on a scale for parkinsonian disability.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从局部场电位和脑电图信号估计帕金森病程度的典型相关。
在这项研究中,从丘脑下核(STN)的局部场电位(LFP)记录和初级运动皮层的脑电图记录(EEGs)中得出的调制指数(MI)特征显示与帕金森病猴子模型的整体运动损伤和运动亚评分相关。所使用的MI特征是测量频率子带之间的相幅交叉频率耦合(CFC)。利用复小波变换对LFP和EEG信号进行3 ~ 60hz范围内的6个频谱子带提取。使用典型相关方法,我们发现LFP或EEG信号中MI特征的加权组合与帕金森残疾量表上的个体和综合得分显著相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regulation of arousal and performance of a healthy non-human primate using closed-loop central thalamic deep brain stimulation. The Design of Brainstem Interfaces: Characterisation of Physiological Artefacts and Implications for Closed-loop Algorithms. Medial Tractography Analysis (MeTA) for White Matter Population Analyses Across Datasets Inferring Pyramidal Neuron Morphology using EAP Data. Reverse engineering information processing in lateral amygdala during auditory tones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1